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Abstract
We propose a novel belief space planning technique for continuous dynamics by viewing the belief system as a
hybrid dynamical system with time-driven switching. Our approach is based on the perturbation theory of differential
equations and extends Sequential Action Control Ansari and Murphey (2016) to stochastic belief dynamics. The
resulting algorithm, which we name SACBP, does not require discretization of spaces or time and synthesizes
control signals in near real-time. SACBP is an anytime algorithm that can handle general parametric Bayesian filters
under certain assumptions. We demonstrate the effectiveness of our approach in an active sensing scenario and a
model-based Bayesian reinforcement learning problem. In these challenging problems, we show that the algorithm
significantly outperforms other existing solution techniques including approximate dynamic programming and local
trajectory optimization.

Keywords
Belief Space Planning, Active Sensing, Mobile Robots, Optimization and Optimal Control, Probabilistic Reasoning,
Vision and Sensor-based Control

1 Introduction

Planning under uncertainty still remains as a challenge for
robotic systems. Various types of uncertainty, including
unmodeled dynamics, stochastic disturbances, and imperfect
sensing, significantly complicate problems that are otherwise
easy. For example, suppose that a robot needs to manipulate
an object from some initial state to a desired goal. If the
mass properties of the object are not known beforehand,
the robot needs to simultaneously estimate these parameters
and perform control, while taking into account the effects
of their uncertainty; the exploration and exploitation trade-
off needs to be resolved Slade et al. (2017). On the other
hand, uncertainty is quite fundamental in motivating some
problems. For instance, a noisy sensor may encourage the
robot to carefully plan a trajectory so the observations taken
along it are sufficiently informative. This type of problem
concerns pure information gathering and is often referred to
as active sensing Mihaylova et al. (2002), active perception
Bajcsy (1988), or informative motion planning Hollinger and
Sukhatme (2014).

A principled approach to address all those problems is to
form plans in the belief space, where the planner chooses
sequential control inputs based on the evolution of the
belief state. This approach enables the robot to appropriately
execute controls under stochasticity and partial observability
since they are both incorporated into the belief state. Belief
space planning is also well suited for generating information
gathering actions Platt et al. (2010).

This paper proposes a novel online belief space planning
algorithm. It does not require discretization of the state
space or the action space, and can directly handle
continuous-time system dynamics. The algorithm optimizes
the expected value of the first-order cost reduction with

respect to a nominal control policy at every re-planning
time, proceeding in a receding horizon fashion. We are
inspired by the Sequential Action Control (SAC) algorithm
recently proposed in Ansari and Murphey (2016) for model-
based deterministic optimal control problems. SAC is an
online method to synthesize control signals in real time
for challenging (but deterministic) physical systems such
as a cart pendulum and a spring-loaded inverted pendulum.
Based on the concept of SAC, this paper develops an
algorithmic framework to control stochastic belief systems
whose dynamics are governed by parametric Bayesian filters.

1.1 Related Work in Belief Space Planning
Greedy Strategies Belief space planning is known to

be challenging for a couple of reasons. First, the belief
state is continuous and can be high-dimensional even if
the underlying state space is small or discrete. Second,
the dynamics that govern the belief state transitions are
stochastic due to unknown future observations. Greedy
approaches alleviate the complexity by ignoring long-term
effects and solve single-shot decision making problems.
Despite their suboptimality for long-term planning, these
methods are often employed to find computationally
tractable solutions and achieve reasonable performance in
different problems Bourgault et al. (2002); Seekircher et al.
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(2011); Schwager et al. (2017), especially in the active
sensing domain.

Trajectory Optimization Methods In contrast to the
greedy approaches, trajectory optimization methods take
into account multiple timesteps at once and find non-
myopic solutions. In doing so, it is often assumed that
the maximum likelihood observation (MLO) will always
occur at the planning phase Platt et al. (2010); Erez and
Smart (2010); Patil et al. (2014). This heuristic assumption
results in a deterministic optimal control problem, whereby
various nonlinear trajectory optimization algorithms are
applicable. However, ignoring the effects of stochastic
future observations can degrade the performance van den
Berg et al. (2012). Other methods van den Berg et al.
(2012); Rafieisakhaei et al. (2017) that do not rely on
the MLO assumption are advantageous in that regard.
In particular, belief iLQG van den Berg et al. (2012)
performs iterative local optimization in the Gaussian belief
space by quadratically approximating the value function
and linearizing the dynamics to obtain a time-variant
linear feedback policy. However, this method as well as
many other solution techniques in this category result in
multiple iterations of intensive computation and can require
a significant amount of time until convergence.

Belief MDP and POMDP Approaches Belief space
planning can be modeled as a Markov decision process
(MDP) in the belief space, given that the belief state
transition is Markovian. If in addition the reward (or cost)
is defined as an explicit function of the state and the
control, the problem is equivalent to a partially observable
Markov decision process (POMDP) Kaelbling et al. (1998).
A key challenge in POMDPs and belief MDPs has been to
address problems with large state spaces. This is particularly
important in belief MDPs since the state space for a belief
MDP is a continuous belief space. To handle continuous
spaces, Couëtoux et al. (2011) introduce double progressive
widening (DPW) for Monte Carlo Tree Search (MCTS)
Browne et al. (2012). In Slade et al. (2017), this MCTS-
DPW algorithm is run in the belief space to solve the
object manipulation problem mentioned above. We have
also presented a motion-based communication algorithm in
our prior work, which uses MCTS-DPW for active intent
inference with monocular vision Nishimura and Schwager
(2018a).

While MCTS-DPW as well as other general purpose
POMDP methods Somani et al. (2013); Sunberg and
Kochenderfer (2017) are capable of handling continuous
state spaces, their algorithmic concepts are rooted in dynamic
programming and tree search, requiring a sufficient amount
of exploration in the tree. The tree search technique
also implicitly assumes discrete-time transition models.
In fact, most prior works discussed above are intended
for discrete-time systems. There still remains a need for
an efficient and high-performance belief space planning
algorithm that is capable of directly handling systems with
inherently continuous-space, continuous-time dynamics,
such as maneuvering micro-aerial vehicles, or autonomous
cars at freeway speeds.

1.2 Contributions
Our approach presented in this paper is significantly different
than the previous approaches discussed above. We view the
stochastic belief dynamics as a hybrid system with time-
driven switching Heemels et al. (2009), where the controls
are applied in continuous time and the observations are
made in discrete time. A discrete-time observation creates
a jump discontinuity in the belief state trajectory due to
a sudden Bayesian update of the belief state. This view
of belief space planning yields a continuous-time optimal
control problem of a high-dimensional hybrid system. We
then propose a model-based control algorithm to efficiently
compute the control signals in a receding-horizon fashion.
The algorithm is based on Sequential Action Control (SAC)
Ansari and Murphey (2016). SAC in its original form is a
deterministic, model-based hybrid control algorithm, which
“perturbs” a nominal control trajectory in a structured way
so that the cost functional is optimally reduced up to the first
order. The key to this approach is the use of the perturbation
theory of differential equations that is often discussed in the
mode scheduling literature Egerstedt et al. (2006); Wardi
and Egerstedt (2012). As a result, SAC derives the optimal
perturbation in closed form and synthesizes control signals
at a high frequency to achieve a significant improvement
over other optimal control methods based on local trajectory
optimization.

We apply the perturbation theory to parametric Bayesian
filters and derive the optimal control perturbation using the
framework of SAC. To account for stochasticity, we also
extend the original algorithm by incorporating Monte Carlo
sampling of nominal belief trajectories. Our key contribution
is the resulting continuous belief space planning algorithm,
which we name SACBP. The algorithm has the following
desirable properties:

1. SACBP optimizes the expected value of the first-order
reduction of the cost functional with respect to some
nominal control in near real-time.

2. SACBP does not require discretization of the state
space, the observation space, or the control space. It
also does not require discretization of time other than
for numerical integration purposes.

3. General nonlinear parametric Bayesian filters can be
used for state estimation as long as the system is
control-affine and the control cost is quadratic.

4. Stochasticity in the future observations are fully
considered.

5. SACBP is an anytime algorithm. Furthermore, the
Monte Carlo sampling part of the algorithm is
naturally parallelizable.

6. Even though SACBP is inherently suboptimal for the
original stochastic optimal control problem, empirical
results suggest that it is highly sample-efficient and
outperforms other approaches when near real-time
performance is required.

Although there exists prior work Mavrommati et al.
(2018) that uses SAC for active sensing, its problem
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formulation relies on the ergodic control framework,
which is significantly different from the belief space
planning framework we propose here. We show that our
SACBP outperforms projection-based ergodic trajectory
optimization, MCTS-DPW, and a greedy method on
a multi-target tracking example. We also show that
SACBP outperforms belief iLQG and MCTS-DPW on a
manipulation scenario.

This paper is an extension of the theory and results
previously presented by the authors in Nishimura and
Schwager (2018b). Compared to the conference version, we
provide a more detailed derivation of the algorithm (Section
2) as well as a thorough mathematical analysis of the control
perturbation for stochastic hybrid systems (Section 3 and
Appendix A). This analysis leads to a guarantee for SACBP
that, with an appropriate choice of the perturbation duration,
the algorithm is expected to perform no worse than the
nominal policy. Since the nominal policy can be arbitrary,
one could even provide an approximately optimal discrete
POMDP policy derived offline as a nominal policy to ”warm-
start” the planning.

In the next section we derive relevant equations and
present the SACBP algorithm along with a discussion
on computational complexity. Section 3 provides the key
results of the mathematical analysis. Section 4 summarizes
the simulation results. Conclusions and future work are
presented in Section 5.

2 SACBP Algorithm
We first consider the case where some components of
the state are fully observable. We begin with this mixed
observability case as it is simpler to explain, yet still
practically relevant. For example, this is a common
assumption in various active sensing problems Schwager
et al. (2017); Le Ny and Pappas (2009); Popovi et al.
(2017) where the state of the robot is perfectly known, but
some external variable of interest (e.g. a target’s location)
is stochastic. In addition, deterministic state transitions are
often assumed for the robot. Therefore, in Section 2.1 we
derive the SACBP control update formulae for this case. The
general belief space planning where none of the state is fully
observable or deterministically controlled is discussed in
Section 2.2. An extension to use a closed-loop policy as the
nominal control is presented in Section 2.3. The computation
time complexity is discussed in Section 2.4.

2.1 Problems with Mixed Observability
Suppose that a robot can fully observe and deterministically
control some state p(t) ∈ Rnp . Other states are not known
to the robot and are estimated with the belief vector
b(t) ∈ Rnb . This belief vector characterizes a probability
distribution that the robot uses for state estimation. If the
belief is Gaussian, for example, the covariance matrix can
be vectorized column-wise and stacked all together with the
mean to form the belief vector. We define the augmented
state as s , (pT, bT)T ∈ Rns .

2.1.1 Dynamics Model The physical state p is described
by the following ODE:

ṗ(t) = f (p(t), u(t)) , (1)

where u(t) ∈ Rm is the control signal. On the other hand,
suppose that the belief state only changes in discrete time
upon arrival of a new observation from the sensors. This is
the usual case for discrete-time Bayesian filtering. We will
discuss the more general continuous-discrete time filtering
in Section 2.2. Let tk be the time when the k-th observation
becomes available to the robot. The belief state transition is
given by{

b(tk) = g(p(t−k ), b(t−k ), yk)

b(t) = b(tk) ∀t ∈ [tk, tk+1),
(2)

where t−k is infinitesimally smaller than tk. Nonlinear
function g corresponds to a discrete-time, parametric
Bayesian filter (e.g., Kalman filter, extended Kalman filter,
discrete Bayesian filter, etc.) that forward-propagates the
belief for prediction, takes the new observation yk ∈ Rq , and
returns the updated belief state. The concrete choice of the
filter depends on the instance of the problem.

Equations (1) and (2) constitute a hybrid system with time-
driven switching Heemels et al. (2009). This hybrid system
representation is practical since it captures the fact that the
observation updates occur less frequently than the control
actuation in general, due to expensive information processing
of sensor readings. Furthermore, with this representation one
can naturally handle agile systems as they are without coarse
discretization in time.

Given the initial state s0 , (p(t0)T, b(t0)T)T and a
control trajectory from t0 to tf denoted as u, the system
evolves stochastically according to the hybrid dynamics
equations. The stochasticity is due to a sequence of stochastic
future observations that will be taken by tf . In this paper
we assume that the observation interval tk+1 − tk , ∆to
is fixed, and the control signals are recomputed when a
new observation is incorporated in the belief, although this
assumption is not critical.

2.1.2 Perturbed Dynamics The control synthesis of
SACBP begins with a given nominal control u. Suppose
that the nominal control is applied to the system and
a sequence of T observations (y1, . . . , yT ) is obtained.
Conditioned on the observation sequence, the augmented
state evolves deterministically. Let s = (pT, bT)T be the
nominal trajectory of the augmented state induced by
(y1, . . . , yT ).

Now let us consider perturbing the nominal trajectory at
a fixed time τ < t1 for a short duration ε. The perturbed
control uε is defined as

uε(t) ,

{
v if t ∈ (τ − ε, τ ]

u(t) otherwise.
(3)

Therefore, the control perturbation is determined by the
nominal control u, the tuple (τ, v), and ε. Given (τ, v), the
resulting perturbed system trajectory can be written as{

pε(t) , p(t) + εΨp(t) + o(ε)

bε(t) , b(t) + εΨb(t) + o(ε),
(4)
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where Ψp(t) and Ψb(t) are the state variations that are linear
in the perturbation duration ε:

Ψp(t) =
∂+

∂ε
pε(t)

∣∣∣∣
ε=0

, lim
ε→0+

pε(t)− p(t)
ε

(5)

Ψb(t) =
∂+

∂ε
bε(t)

∣∣∣∣
ε=0

, lim
ε→0+

bε(t)− b(t)
ε

. (6)

The notation ∂+
∂ε represents the right derivative with respect

to ε. The state variations at perturbation time τ satisfy{
Ψp(τ) = f(p(τ), v)− f(p(τ), u(τ))

Ψb(τ) = 0,
(7)

assuming that τ does not exactly correspond to any of the
switching times tk. For t ≥ τ , the physical state variation Ψp

evolves according to the following first-order ODE:

Ψ̇p(t) =
d

dt

(
∂+

∂ε
pε(t)

∣∣∣∣
ε=0

)
(8)

=
∂+

∂ε
ṗε(t)

∣∣∣∣
ε=0

(9)

=
∂+

∂ε
f(pε(t), u(t))

∣∣∣∣
ε=0

(10)

=
∂

∂p
f (p(t), u(t)) Ψp(t), (11)

where the chain rule of differentiation and pε(t)|ε=0 = p(t)
are used in (11). For a more rigorous analysis, see Appendix
A. The dynamics of the belief state variation Ψb in the
continuous region t ∈ [tk, tk+1) satisfy Ψ̇b(t) = 0 since the
belief vector b(t) is constant according to (2). However,
across the jumps the belief state variation Ψb changes
discontinuously and satisfies

Ψb(tk) =
∂+

∂ε
bε(tk)

∣∣∣∣
ε=0

(12)

=
∂+

∂ε
g
(
pε(t−k ), bε(t−k ), yk

) ∣∣∣∣
ε=0

(13)

=
∂

∂p
g
(
p(t−k ), b(t−k ), yk

)
Ψp(t

−
k )

+
∂

∂b
g
(
p(t−k ), b(t−k ), yk

)
Ψb(t

−
k ).

(14)

2.1.3 Perturbed Cost Functional Let us consider a total
cost of the form∫ tf

t0

c (p(t), b(t), u(t)) dt+ h(p(tf ), b(tf )), (15)

where c is the running cost and h is the terminal cost.
Following the discussion above on the perturbed dynamics,
let J denote the total cost of the nominal trajectory
conditioned on the given observation sequence (y1, . . . , yT ).
Under the fixed (τ, v), we can represent the perturbed cost
Jε in terms of J as

Jε , J + εν(tf ) + o(ε), (16)

where ν(tf ) , ∂+
∂ε J

ε|ε=0 is the variation of the total cost
with respect to the perturbation. For further analysis it is

convenient to express the running cost in the Mayer form
Liberzon (2011). Let ŝ(t) be a new state variable defined
by ˙̂s(t) = c (p(t), b(t), u(t)) and ŝ(t0) = 0. Then the total
cost is a function of the appended augmented state s̄ ,
(ŝ, sT)T ∈ R1+ns at time tf , which is given by

J = ŝ(tf ) + h (s(tf )) . (17)

Using this form of the total cost J , the perturbed cost (16)
becomes

Jε = J + ε

 1
∂
∂ph (p(tf ), b(tf ))
∂
∂bh (p(tf ), b(tf ))

T

Ψ(tf ) + o(ε), (18)

where Ψ(tf ) ,
(

Ψ̂(tf ),Ψp(tf )T,Ψb(tf )T
)T

. Note that the
dot product in (18) corresponds to ν(tf ) in (16). The
variation Ψ̂ of the appended augmented state follows the
variational equation for t ≥ τ :

˙̂
Ψ(t) =

d

dt

(
∂+

∂ε
ŝε(t)

∣∣∣∣
ε=0

)
(19)

=
∂+

∂ε
˙̂sε(t)

∣∣∣∣
ε=0

(20)

=
∂+

∂ε
c(pε(t), bε(t), u(t))

∣∣∣∣
ε=0

(21)

=
∂

∂p
c(p(t), b(t), u(t))TΨp(t)

+
∂

∂b
c(p(t), b(t), u(t))TΨb(t)

(22)

where the initial condition is given by Ψ̂(τ) =
c(p(τ), b(τ), v)− c(p(τ), b(τ), u(τ)).

The perturbed cost equation (18), especially the dot
product expressing ν(tf ), is consequential; it tells us how
the total cost changes due to the perturbation applied at some
time τ , up to the first order with respect to the perturbation
duration ε. At this point, one could compute the value of
ν(tf ) for a control perturbation with a specific value of
(τ, v) by simulating the nominal dynamics and integrating
the variational equations (11)(14)(22) from τ up to tf .

2.1.4 Adjoint Equations Unfortunately, this forward inte-
gration of ν(tf ) is not so useful by itself since we are
interested in finding the value of (τ, v) that achieves the
smallest possible ν(tf ), if it exists; it would be compu-
tationally intensive to apply control perturbation at differ-
ent application times τ with different values of v and re-
simulate the state variation Ψ. To avoid this computationally
expensive search, Ansari and Murphey (2016) has introduced
the adjoint system ρ with which the dot product remains
invariant:

d

dt

(
ρ(t)TΨ(t)

)
= 0 ∀t ∈ [t0, tf ]. (23)

If we let

ρ(tf ) ,

(
1,

∂

∂p
h (p(tf ), b(tf ))

T
,

∂

∂b
h (p(tf ), b(tf ))

T

)T

(24)
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so that its dot product with Ψ(tf ) equals ν(tf ) as in (18), the
time invariance gives

ν(tf ) = ρ(tf )TΨ(tf ) (25)

= ρ(τ)TΨ(τ) (26)

= ρ(τ)T

c (p(τ), b(τ), v)− c (p(τ), b(τ), u(τ))
f(p(τ), v)− f(p(τ), u(τ))

0

 .
(27)

Therefore, we can compute the first-order cost change ν(tf )
for different values of τ once the adjoint trajectory is derived.
For t ∈ [tk, tk+1) the time derivative of Ψ exists, and the
invariance property leads to the following equation:

ρ̇(t)TΨ(t) + ρ(t)TΨ̇(t) = 0. (28)

It can be verified that the following system satisfies (28) with
ρ(t) =

(
ρ̂(t), ρp(t)

T, ρb(t)
T
)T

.
˙̂ρ(t) = 0

ρ̇p(t) = − ∂
∂pc(p(t), b(t), u(t))− ∂

∂pf(p(t), u(t))Tρp(t)

ρ̇b(t) = − ∂
∂bc(p(t), b(t), u(t)).

(29)

Analogously, across discrete jumps we can still enforce the
invariance by setting ρ(tk)TΨ(tk) = ρ(t−k )TΨ(t−k ), which
holds for the following adjoint equations:

ρ0(t−k ) = ρ0(tk)

ρp(t
−
k ) = ρp(tk) + ∂

∂pg
(
p(t−k ), b(t−k ), yk

)T
ρb(tk)

ρb(t
−
k ) = ∂

∂bg
(
p(t−k ), b(t−k ), yk

)T
ρb(tk).

(30)

Note that the adjoint system integrates backward in time
as it has the boundary condition (24) defined at tf . More
importantly, the adjoint dynamics (29)(30) only depend
on the nominal trajectory of the system (p, b) and the
observation sequence (y1, . . . , yT ). The cost variation term
ν(tf ) is finally given by

ν(tf ) = c(p(τ), b(τ), v)− c(p(τ), b(τ), u(τ))+

ρp(τ)T {f(p(τ), v)− f(p(τ), u(τ))} . (31)

2.1.5 Control Optimization In order to efficiently optimize
(31) with respect to (τ, v), we assume that the control
cost is additive quadratic 1

2u
TCuu and the dynamics model

f(p, u) is control-affine with linear term H(p)u. Although
the control-affine assumption may appear restrictive, many
physical systems possess this property in engineering
practice. As a result of these assumptions, (31) becomes

ν(tf ) =
1

2
vTCuv + ρp(τ)TH(p(τ))(v − u(τ))

− 1

2
u(τ)TCuu(τ). (32)

So far we have treated the observation sequence
(y1, . . . , yT ) as given and fixed. However, in practice it
is a random process that we have to take into account.
Fortunately, our control optimization is all based on the

nominal control u, with which we can both simulate the
augmented dynamics and sample the observations. To see
this, let us consider the observations as a sequence of
random vectors (Y1, . . . , YT ) and rewrite ν(tf ) in (32)
as ν(tf , Y1, . . . , YT ) to clarify the dependence on it. The
expected value of the first order cost variation is given by

E[ν(tf )] =

∫
ν(tf , Y1, . . . , YT )dP, (33)

where P is the probability measure assciated with the these
random vectors. Although we do not know the specific values
of P, we have the generative model; we can simulate the
augmented state trajectory using the nominal control u and
sample the stochastic observations from the belief states
along the trajectory.

Using the linearity of expectation for (32), we have

E[ν(tf )] =
1

2
vTCuv + E[ρp(τ)]TH(p(τ))(v − u(τ))

− 1

2
u(τ)TCuu(τ). (34)

Notice that only the adjoint trajectory is stochastic. We can
employ Monte Carlo sampling to sample a sufficient number
of observation sequences to approximate the expected
adjoint trajectory. Now (34) becomes a convex quadratic in v
for a positive definite Cu. Assuming that Cu is also diagonal,
analytical solutions are available to the following convex
optimization problem.

minimize
v

E[ν(tf )]

subject to a � v � b
(35)

This optimization is solved for different values of τ ∈
(t0 + tcalc + ε, t0 + ∆to), where tcalc is a pre-allocated
computation time budget and ∆to is the time interval
between two successive observations as well as control
updates. We then search over (τ, v∗(τ)) for the optimal
perturbation time τ∗ to globally minimize E[ν(tf )]. There
is only a finite number of such τ to consider since in practice
we use numerical integration such as the Euler scheme with
some step size ∆tc to compute the trajectories. In Ansari
and Murphey (2016) the finite perturbation duration ε is also
optimized using line search, but in this work we set ε as
a tunable parameter to reduce the computation time. The
complete algorithm is summarized in Algorithm 1. The call
to the algorithm occurs every ∆to[s] in a receding-horizon
fashion, after the new observation is incorporated in the
belief.

2.2 General Belief Space Planning Problems
If none of the state is fully observable, the same stochastic
SAC framework still applies almost as is to the belief sate
b. In this case we consider a continuous-discrete filter Xie
et al. (2007) where the prediction step follows an ODE and
the update step provides an instantaneous discrete jump. The
hybrid dynamics for the belief vector yields{

b(tk) = g(b(t−k ), yk)

ḃ(t) = f(b(t), u(t)) ∀t ∈ [tk, tk+1).
(36)
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Algorithm 1 SACBP Control Update for Problems with
Mixed Observability

INPUT: Current augmented state s0 = (p(t0)T, b(t0)T)T,
nominal control u, perturbation duration ε

OUTPUT: Optimally perturbed control schedule uε

1: for i = 1:N do
2: Forward-simulate nominal augmented state

trajectory (1)(2) and sample observation sequence
(yi1, . . . , y

i
T ) along the augmented state trajectory.

3: Backward-simulate nominal adjoint trajectory ρip, ρib
(29)(30) with sampled observations.

4: end for
5: Compute Monte Carlo estimate: E[ρp] ≈ 1

N

∑N
i=1 ρ

i
p.

6: for (τ = t0 + tcalc + ε; τ ≤ t0 + ∆to; τ ← τ + ∆tc)
do

7: Solve quadratic minimization (35) with (34). Store
optimal value ν∗(τ) and optimizer v∗(τ).

8: end for
9: τ∗ ← arg min ν∗(τ), v∗ ← v∗(τ∗)

10: uε ← PerturbControlTrajectory(u, v∗, τ∗, ε) (3)
11: return uε

Letting Ψ(t) = ∂+
∂ε b

ε(t)
∣∣
ε=0

, the variational equation is
given by{

Ψ(tk) = ∂
∂bg(b(t−k ), yk)Ψ(t−k )

Ψ̇(t) = ∂
∂bf(b(t), u(t))Ψ(t) ∀t ∈ [tk, tk+1)

(37)

with initial condition Ψ(τ) = f(b(τ), v)− f(b(τ), u(τ)).
Let the total cost be of the form:∫ tf

t0

c(b(t), u(t))dt+ h(b(tf )). (38)

Under the given (τ, v) and (y1, . . . , yT ), the variation ν(tf )
of the total cost can be computed as

ν(tf ) = c(b(τ), v)− c(b(τ), u(τ))

+

∫ tf

τ

∂

∂b
c(b(t), u(t))TΨ(t)dt

+
∂

∂b
h(b(tf ))TΨ(tf ). (39)

This is equivalent to

ν(tf ) = c(b(τ), v)− c(b(τ), u(τ))

+ ρ(τ)T {f(b(τ), v)− f(b(τ), u(τ)} , (40)

where ρ is the adjoint system that follows the dynamics:{
ρ(t−k ) = ∂

∂bg(b(t−k ), yk)Tρ(tk)

ρ̇(t) = − ∂
∂bc(b(t), u(t))− ∂

∂bf(b(t), u(t))Tρ(t)
(41)

with the boundary condition ρ(tf ) = ∂
∂bh(b(tf )). Under the

control-affine assumption for f and the additive quadratic
control cost, the expected first order cost variation (40) yields

E[ν(tf )] =
1

2
vTCuv + E[ρ(τ)]TH(b(τ))(v − u(τ))

− 1

2
u(τ)TCuu(τ), (42)

Algorithm 2 SACBP Control Update for General Belief
Space Planning Problems

INPUT: Current belief state b0 = b(t0), nominal control u,
perturbation duration ε

OUTPUT: Optimally perturbed control schedule uε

1: for i = 1:N do
2: Forward-simulate nominal belief state trajectory (36)

and sample observation sequence (yi1, . . . , y
i
T ) along the

belief trajectory.
3: Backward-simulate nominal adjoint trajectory ρi

(41) with sampled observations.
4: end for
5: Compute Monte Carlo estimate: E[ρ] ≈ 1

N

∑N
i=1 ρ

i.
6: for (τ = t0 + tcalc + ε; τ ≤ t0 + ∆to; τ ← τ + ∆tc)

do
7: Solve quadratic minimization (35) with (42). Store

optimal value ν∗(τ) and optimizer v∗(τ).
8: end for
9: τ∗ ← arg min ν∗(τ), v∗ ← v∗(τ∗)

10: uε ← PerturbControlTrajectory(u, v∗, τ∗, ε) (3)
11: return uε

where H(b(τ)) is the control coefficient term in f .
Although it is difficult to state the general conditions

under which this control-affine assumption holds, one can
verify that the continuous-discrete EKF Xie et al. (2007)
satisfies this property if the underlying system dynamics fsys
is control-affine.{

µ̇(t) = fsys(µ(t), u(t))

Σ̇(t) = AΣ + ΣAT +Q
(43)

In the above continuous-time prediction equations, A is the
Jacobian of the dynamics function fsys(x(t), u(t)) evaluated
at the mean µ(t) and Q is the process noise covariance.
If fsys is control-affine, so is A and therefore so is Σ̇.
Obviously µ̇ is control affine as well. As a result the
dynamics for the belief vector b = (µT, vec(Σ)T)T satisfy
the control-affine assumption.

Mirroring the approach in Section 2.1, we can use Monte
Carlo sampling to estimate the expected value in (42). The
resulting algorithm is presented in Algorithm 2.

2.3 Closed-loop Nominal Policy
In Sections 2.1 and 2.2 we assumed that the nominal control
u was an open-loop control trajectory. However, one can
think of a scenario where a nominal control is a closed-
loop policy computed off-line, such as a discrete POMDP
policy. Indeed, SACBP can also handle closed-loop nominal
policies. Let π be a closed-loop nominal policy, which is
a mapping from either an augmented state s(t) or a belief
state b(t) to a control value u(t). Due to the stochastic belief
dynamics, the control values returned by π in the future is
also stochastic for t ≥ t1. This is reflected when we forward-
propagate the nominal dynamics. Specifically, each sampled
trajectory has a different control trajectory in addition to a
different observation sequence. However, the equations are
still convex quadratic in v as shown below. For problems with
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mixed observability, we have

E[ν(tf )] =
1

2
vTCuv + E[ρp(τ)]TH(p(τ)) {v − π(s(τ))}

− 1

2
π(s(τ))TCuπ(s(τ)). (44)

The general belief space planning case also yields a similar
equation:

E[ν(tf )] =
1

2
vTCuv + E[ρ(τ)]TH(b(τ)) {v − π(b(τ))}

− 1

2
π(b(τ))TCuπ(b(τ)). (45)

Note that s(τ) and b(τ) are both deterministic since the first
observation y1 is not yet taken at τ < t1. The expectations in
(44) and (45) can be estimated using Monte Carlo sampling.
The forward-simulation of the nominal trajectory in Line 2
of Algorithms 1 and 2 is now with the closed loop policy π,
and the equations in Line 7 need to be replaced with (44) and
(45), respectively. However, the rest remains unchanged.

2.4 Computation Time Complexity
Let us analyze the time complexity of the SACBP algorithm.
The bottleneck of the computation is when the forward-
backward simulation is performed multiple times (lines 1–
5 of Algorithms 1 and 2). The asymptotic complexity of
this part is given by O(N(

tf−t0
∆to

)(Mforward +Mbackward)),
where Mforward and Mbackward are the times to respectively
integrate the forward and backward dynamics between two
successive observations. For a more concrete analysis let
us use the Gaussian belief dynamics given by EKF as an
example. For simplicity we assume the same dimension n
for the state, the control, and the observation. The belief
state has dimension O(n2). Using the Euler scheme, the
forward integration takes Mforward = O((∆to

∆tc
+ 1)n3) since

evaluating continuous and discrete EKF equations are both
O(n3). Computation of the continuous part of the costate
dynamics (41) is dominated by the evaluation of the Jacobian
∂f
∂b , which is O(n5) because O(n3) operations to evaluate
f are carried out O(n2) times. The discrete part is also
O(n5). Therefore, Mbackward = O((∆to

∆tc
+ 1)n5). Overall,

the time complexity is O(N(
tf−t0
∆to

)(∆to
∆tc

+ 1)n5). This is
asymptotically smaller in n than belief iLQG, which is
O(n6). See Rafieisakhaei et al. (2017) for a comparison
of time complexity among different belief space planning
algorithms. We also remind the readers that SACBP is
an online method and a naive implementation already
achieves near real-time performance, computing control in
less than 0.4[s]. By near real-time we mean that a naive
implementation of SACBP requires approximately 3× tcalc
to 7× tcalc time to compute an action that must be applied
tcalc[s] in the future. We expect that parallelization in a GPU
and a more efficient implementation will result in real-time
computation for SACBP.

3 Analysis of Mode Insertion Gradient for
Stochastic Hybrid Systems

The SACBP algorithm presented in Section 2 as well as the
original SAC algorithm Ansari and Murphey (2016) both

rely on the local sensitivity analysis of the cost functional
with respect to the control perturbation. This first-order
sensitivity term (i.e. ν(tf ) in our notation) is known as the
mode insertion gradient in the mode scheduling literature
Egerstedt et al. (2006); Wardi and Egerstedt (2012). In
Ansari and Murphey (2016) the notion of the mode insertion
gradient has been generalized to handle a broader class of
hybrid systems than discussed before. What remains to be
seen is a further generalization of the mode insertion gradient
to stochastic hybrid systems, such as the belief dynamics
discussed in this paper. Indeed, the quantity we can optimize
in (35) is essentially the expected value of the first-order
sensitivity of the total cost. This is not to be confused with the
first-order sensitivity of the expected total cost, which would
be a natural generalization of the mode insertion gradient to
stochastic systems. In general, those two quantities can be
different, since the order of expectation and differentiation
may not be swapped arbitrarily. In this section, we provide
a set of sufficient conditions under which the order can
be exchanged. By doing so we show that 1) the notion
of mode insertion gradient can be generalized to stochastic
hybrid systems, and 2) the SACBP algorithm optimizes this
generalized mode insertion gradient. Through this analysis
we will see that the SACBP algorithm has a guarantee that,
in expectation it performs at least as good as the nominal
policy for an appropriate choice of ε.

3.1 Assumptions
Let us begin with a set of underlying assumptions for
the system dynamics, the control, and the cost functions.
Without loss of generality, we assume that the system
starts at time t = 0 and ends at t = T , with a sequence
of T observations (y1, . . . , yT ) made every unit time. For
generality, we use notation x to represent the state variable
of the system in this section, in place of b or s that
respectively represented the belief state or the augmented
state in Section 2. This means that the analysis presented
here is not restricted to belief systems where the dynamics is
governed by Bayesian filters, but rather applies to a broader
class of systems.

Assumption 1. Control Model. The controls are in
C̃0,m[0, T ], the space of piecewise continuous functions
from [0, T ] into Rm. We further assume that there exists
some ρmax <∞ such that for all t ∈ [0, T ], we have u(t) ∈
B(0, ρmax) whereB(0, ρmax) is the closed Euclidean ball of
radius ρmax centered at 0, i.e. ‖u(t)‖2 ≤ ρmax. We denote
this admissible control set by U , {u ∈ C̃0,m[0, T ] | ∀t ∈
[0, T ] u(t) ∈ B(0, ρmax)}.
Remark 1. The control model described above takes the
form of an open-loop control, where time t determines
the control signal u(t). The generalization to closed-loop
nominal policies are discussed in Appendix A. (See Remark
5.)

Assumption 2. Dynamics Model. Let x0 ∈ Rnx be the
given initial state value at t = 0. Given a control u ∈ U
and a sequence of observations (y1, . . . , yT ) ∈ Rny × · · · ×
Rny , the dynamics model is the following hybrid system with
time-driven switching:

x(t) , xi(t) ∀t ∈ [i− 1, i) ∀i ∈ {1, 2, . . . , T}, (46)
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where xi is the i-th ”mode” of the system state defined on
[i− 1, i] as:

xi(i− 1) = g (xi−1(i− 1), yi−1) (47)
ẋi(t) = f (xi(t), u(t)) ∀t ∈ [i− 1, i], (48)

with x(0) = x1(0) = x0. We also define the final state as
x(T ) , g(xT (T ), yT ).

For the transition functions f and g we assume the
following:

(2a) the function f : Rnx × Rm → Rnx is continuously
differentiable;

(2b) the function g : Rnx × Rny → Rnx is continuous. It is
also differentiable in x;

(2c) for function f , there exist constants K1 ∈ [1,∞) and
K2 ∈ (0,∞) such that ∀x′, x′′ ∈ Rnx and ∀u′, u′′ ∈
B(0, ρmax), the following relations hold:

‖f(x′, u′)− f(x′′, u′′)‖2
≤ K1 (‖x′ − x′′‖2 + ‖u′ − u′′‖2) (49)

∥∥∥∥ ∂∂xf(x′, u′)

∥∥∥∥
2

≤ K2 (50)

(2d) for function g, there exist finite non-negative constants
K3,K4,K5,K6 and positive integers L1, L2 such that
∀x ∈ Rnx and ∀y ∈ Rny , the following relations hold:

‖g(x, y)‖2 ≤ K3 +K4‖x‖L1
2 +K5‖y‖L2

2

+K6‖x‖L1
2 ‖y‖

L2
2 (51)

∥∥∥∥ ∂∂xg(x, y)

∥∥∥∥
2

≤ K3 +K4‖x‖L1
2 +K5‖y‖L2

2

+K6‖x‖L1
2 ‖y‖

L2
2 (52)

Remark 2. Assumptions (2a) and (2c) are related to the
existence and uniqueness of the solution to the differential
equation (48) as well as the variational equation under
control perturbation. (See Propositions 3 and 15 in Appendix
A.) These assumptions are similar to Assumption 5.6.2 in
Elijah (1997). Assumptions (2b) and (2d) are the growth
conditions on x across adjacent modes. Recall that in belief
space planning where the system state x is the belief state b,
the jump function g corresponds to the observation update
of the Bayesian filter. The form of the bound in (51) and (52)
allows a broad class of continuous functions to be considered
as g, and is inspired by a few examples of the Bayesian
update equations as presented below.

Proposition 1. Bounded Jump for Univariate Gaussian
Distribution. Let b = (µ, s)T ∈ R2 be the belief state,
where µ is the mean parameter and s > 0 is the variance.
Suppose that the observation y is the underlying state x ∈ R
corrupted by additive Gaussian white noise v ∼ N (0, 1).
Then, the Bayesian update function g for this belief system
satisfies Assumption (2d).

Proof. The Bayesian update formula for this system is given
by g(b, y) = b̂ , (µ̂, ŝ)T, where

µ̂ = µ+
s

s+ 1
(y − µ) (53)

ŝ = s− s2

s+ 1
(54)

is the update step of the Kalman filter. Rearranging the terms,
we have

g(b, y) =
1

s+ 1

(
µ+ sy
s

)
(55)

and consequently,

∂

∂b
g(b, y) =

1

(s+ 1)2

(
s+ 1 y

0 1

)
. (56)

We will show that the function g satisfies Assumption (2d).
For the bound on g(b, y),

‖g(b, y)‖22 =
1

(s+ 1)2

{
(µ+ sy)2 + s2

}
(57)

≤ (µ+ sy)2 + s2 (58)

≤ ‖b‖22 +

(
bT
(
y
1

))2

(59)

≤ ‖b‖22(2 + ‖y‖22), (60)

where we have used (s+ 1)2 ≥ 1 and the Cauchy-Schwarz
inequality. Thus,

‖g(b, y)‖2 ≤ ‖b‖2
√

2 + ‖y‖22 (61)

≤
√

2‖b‖2 + ‖b‖2‖y‖2 (62)

Similarly, the bound on the Jacobian yields∥∥∥∥ ∂∂bg(b, y)

∥∥∥∥2

2

≤
∥∥∥∥ ∂∂bg(b, y)

∥∥∥∥2

F

(63)

=
1

(s+ 1)4

{
(s+ 1)2 + y2 + 1

}
(64)

=
1

(s+ 1)2
+

1

(s+ 1)4
(y2 + 1) (65)

≤ 2 + ‖y‖22. (66)

Therefore, ∥∥∥∥ ∂∂bg(b, y)

∥∥∥∥
2

≤
√

2 + ‖y‖2 (67)

This shows that the jump function g for the above
univariate Gaussian model satisfies Assumption (2d) with
(K3,K4,K5,K6) = (

√
2,
√

2, 1, 1) and (L1, L2) = (1, 1).

Proposition 2. Bounded Jump for Categorical Distribu-
tion. Let b = (b1, . . . , bn)T ∈ Rn be the n-dimensional
belief state representing the categorical distribution over
the underlying state x ∈ {1, . . . , n}. We choose the unnor-
malized form where the probability of x = i is given by
bi/
∑n
i=1 bi. Let the observation y ∈ {1, . . . ,m} be modeled

by a conditional probability mass function p(y | x) ∈ [0, 1].
Then, the Bayesian update function g for this belief system
satisfies Assumption (2d).
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Proof. The Bayes rule gives g(b, y) = b̂ , (b̂1, . . . , b̂n),
where 

b̂1
b̂2
...
b̂n

 =


p(y | 1)b1
p(y | 2)b2

...
p(y | n)bn

 . (68)

Therefore, we can easily bound the norm of the posterior
belief b̂ by

‖g(b, y)‖2 = ‖b̂‖2 ≤ ‖b‖2, (69)

as p(y | x) ≤ 1. The Jacobian is simply the diagonal matrix
diag(p(y | 1), . . . , p(y | n)), and hence∥∥∥∥ ∂∂bg(b, y)

∥∥∥∥
2

≤ 1. (70)

This shows that the jump function g for the categor-
ical belief model above satisfies Assumption (2d) with
(K3,K4,K5,K6) = (1, 1, 0, 0) and (L1, L2) = (1, 1).

Assumption 3. Cost Model. The instantaneous cost
c : Rnx × Rm → R is continuous. It is also continuously
differentiable in x. The terminal cost h : Rnx → R is
differentiable. Furthermore, we assume that there exist finite
non-negative constants K7,K8 and a positive integer L3

such that for all x ∈ Rnx and u ∈ B(0, ρmax), the following
relations hold:

|c(x, u)| ≤ K7 +K8‖x‖L3
2 (71)∥∥∥∥ ∂∂xc(x, u)

∥∥∥∥
2

≤ K7 +K8‖x‖L3
2 (72)

|h(x)| ≤ K7 +K8‖x‖L3
2 (73)∥∥∥∥ ∂∂xh(x)

∥∥∥∥
2

≤ K7 +K8‖x‖L3
2 . (74)

Remark 3. Assumption 3 is to guarantee that the cost
function is integrable with respect to stochastic observations,
which are introduced in Assumption 4. Note that even though
the above bound is not general enough to apply to all
analytic functions, it does include all finite order polynomials
of ‖x(t)‖2 and ‖u(t)‖2, for example, since ‖u(t)‖2 is
bounded by Assumption 1.

Assumption 4. Stochastic Observations. Let (Ω,F ,P) be
a probability space. Let (Y1, . . . , YT ) be a sequence of
random vectors in Rny defined on this space, representing
the sequence of observations. Assume that for each Yi all the
moments of the `2 norm is finite. That is,

∀i ∈ {1, . . . , T} ∀k ∈ N E
[
‖Yi‖k2

]
<∞. (75)

Definition 1. Perturbed Control. Let u ∈ U be a control.
For τ ∈ (0, 1) and v ∈ B(0, ρmax), define the perturbed
control uε by

uε(t) ,

{
v if t ∈ (τ − ε, τ ]

u(t) otherwise,
(76)

where ε ∈ [0, τ ]. By definition if ε = 0 then uε is the same as
u. We assume that the nominal control u(t) is left continuous
in t at t = τ .

3.2 Main Results
The main result of the analysis is the following theorem.

Theorem 1. Mode Insertion Gradient. Suppose that
Assumptions 1 – 4 are satisfied. For a given (τ, v), let uε

denote the perturbed control of the form (76). The perturbed
control uε and the stochastic observations (Y1, . . . , YT )
result in the stochastic perturbed state trajectory xε. For such
uε and xε, let us define the mode insertion gradient of the
expected total cost as

∂+

∂ε
E

[∫ T

0

c(xε(t), uε(t))dt+ h(xε(T ))

] ∣∣∣∣∣
ε=0

. (77)

Then, this right derivative exists and we have

∂+

∂ε
E

[∫ T

0

c(xε(t), uε(t))dt+ h(xε(T ))

] ∣∣∣∣∣
ε=0

= c(x(τ), v)− c(x(τ), u(τ))

+ E

[∫ T

τ

∂

∂x
c(x(t), u(t))TΨ(t)dt

+
∂

∂x
h(x(T ))TΨ(T )

]
, (78)

where Ψ(t) = ∂
∂εx

ε(t)
∣∣
ε=0

is the state variation.

The proof of the theorem is deferred to Appendix A.
One can see that the mode insertion gradient (77) is a
natural generalization of the ones discussed in Egerstedt
et al. (2006); Wardi and Egerstedt (2012); Ansari and
Murphey (2016) to stochastic hybrid systems. Furthermore,
by comparing (78) with (39) it is apparent that the right
hand side of (78) is mathematically equivalent to E[ν(tf )],
the quantity to be optimized with the SACBP algorithm in
Section 2.

The fact that SACBP optimizes (77) leads to a certain
performance guarantee of the algorithm. In the open-loop
nominal control case, the term E[ν(tf )] as in (34) or (42)
becomes 0 if the control perturbation v is equal to the
nominal control u(τ). Therefore, as long as u(τ) is a
feasible solution to (35) the optimal value is guaranteed to
be less than or equal to zero. Furthermore, in expectation
the actual value of E[ν(tf )] matches the one approximated
with samples, since the Monte Carlo estimate is unbiased.
In other words, the perturbation (τ∗, v∗) computed by the
algorithm is expected to result in a non-negative mode
insertion gradient. If the mode insertion gradient is negative,
there always exists a sufficiently small ε > 0 such that the
expected total cost is decreased by the control perturbation.
In the corner case that the mode insertion gradient is zero,
one can set ε = 0 to not perturb the control at all. Therefore,
for an appropriate choice of ε the expected performance
of the SACBP algorithm is at least as good as that of the
nominal control.

The same discussion holds for the case of closed-loop
nominal control policies, when the expression for E[ν(tf )]
is given by (44) or (45). Therefore, the expected worst-case
performance of the algorithm is lower-bounded by that of the
nominal policy.
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If we have a reasonable nominal policy, this turns into
a rather strong guarantee compared to other belief space
planning algorithms that can exhibit extremely large regret.
For example, the UCT algorithm is known to have a very
poor expected performance in the worst case due to its over-
optimistic behavior Coquelin and Munos (2007). Therefore,
the Monte Carlo Tree Search methods such as POMCP Silver
and Veness (2010) or MCTS-DPW that are reliant on the
UCT algorithm inherit this issue.

4 Simulation Results
We evaluated the performance of SACBP in the following
simulation studies: (i) active multi-target tracking with
range-only observations; (ii) object manipulation under
model uncertainty. All the computation was performed on
a desktop computer with Intel Core i7-6800K CPU and
62.8GB RAM. The Monte Carlo sampling of SACBP was
parallelized on the CPU.

4.1 Active Multi-Target Tracking with
Range-only Observations

This problem focuses on pure information gathering, namely
identifying where the moving targets are in the environment.
In doing so, the surveillance robot modeled as a single
integrator can only use relative distance observations. The
robot’s position p is fully observable and the transitions
are deterministic. Assuming perfect data association, the
observation for target i is di = ||qi − p+ vi||2, where qi
is the true target position and vi is zero-mean Gaussian
white noise with state-dependent covariance R(p, qi) =
R0 + ||qi − p||2R1. We used 0.01I2×2 for the nominal noise
R0. The range-dependent noise R1 = 0.001I2×2 degrades
the observation quality as the robot gets farther from the
target. The discrete-time UKF was employed for state
estimation in tracking 20 independent targets. The target
dynamics are modeled by a 2D Brownian motion with
covariance Q = 0.1I2×2. Similarly to Spinello and Stilwell
(2010), an approximated observation covariance R(p, µi)
was used in the filter to obtain tractable estimation results,
where µi is the most recent mean estimate of qi.

The SACBP algorithm generated the continuous robot
trajectory over 200[s] with planning horizon tf − t0 =
2[s], update interval ∆to = 0.2[s], perturbation duration
ε = 0.16[s], and N = 10 Monte Carlo samples. The Euler
scheme was used for integration with ∆tc = 0.01[s].
The Jacobians and the gradients were computed either
analytically or using an automatic differentiation tool Revels
et al. (2016) to retain both speed and precision. In this
simulation tcalc = 0.05[s] was assumed no matter how long
the actual control update took. We used c(p, b, u) = 0.05uTu

for the running cost and h(p, b) =
∑20
i=1 exp(entropy(bi))

for the terminal cost, with an intention to reduce the worst-
case uncertainty among the targets. This expression for
h(p, b) is equivalent to:

h(p, b) =

20∑
i=1

√
det(2πeΣi), (79)

where Σi is the covariance for the i-th target. The nominal
control was constantly zero.

We compared SACBP against three benchmarks: (i) a
greedy algorithm based on the gradient descent of terminal
cost h, similar to Schwager et al. (2017); (ii) MCTS-DPW
Couëtoux et al. (2011); Egorov et al. (2017) in the Gaussian
belief space; (iii) projection-based trajectory optimization
for ergodic exploration Miller and Murphey (2013); Miller
et al. (2016); Dressel and Kochenderfer (2018). We also
implemented the belief iLQG algorithm, but the policy did
not converge for this problem. We suspect that the non-
convex terminal cost h contributed to this behavior, which
in fact violates one of the underlying assumptions made in
the paper van den Berg et al. (2012).

MCTS-DPW used the same planning horizon as SACBP,
however it drew N = 15 samples from the belief tree
so the computation time of the two algorithms matched
approximately. Ergodic trajectory optimization is not a belief
space planning approach but has been used in the active
sensing literature. Beginning with the nominal control of
zero, it locally optimized the ergodicity of the trajectory
with respect to the spatial information distribution based
on Fisher information. This optimization was open-loop
since the future observations were not considered. As a
new observation became available, the distribution and
the trajectory were recomputed. All the controllers were
saturated at the same limit. The results presented in Figure
1 clearly indicates a significant performance improvement of
SACBP while achieving near real-time computation. More
notably, SACBP generated a trajectory that periodically
revisited the two groups whereas other methods failed to
do so (Figure 2). With SACBP the robot was moving into
one of the four diagonal directions for most of the time.
This is plausible, as SACBP solves the quadratic program
with a box input constraint (35), which tends to find optimal
solutions at the corners. MCTS-DPW resulted in a highly
non-smooth trajecotry and failed to explore the environment.
The greedy approach improved the smoothness, but the robot
eventually followed a cyclic trajectory in a small region of
the environment. To our surprise, the ergodic method did
not generate a trajectory that covers the two groups of the
targets. This is likely due to the use of a projection-based
trajectory optimization method, which has been recently
found to perform rather poorly with rapid replanning Dressel
(2018).

4.2 Object Manipulation under Model
Uncertainty

This problem is identical to the model-based Bayesian
reinforcement learning problem studied in Slade et al.
(2017), therefore a detailed description of the nonlinear
dynamics and the observation models are omitted. See
Figure 3 for the illustration of the environment. A 2D
robot attached to a rigid body object applies forces and
torques to move the object to the origin. The object’s mass,
moment of inertia, moment arm lengths, and linear friction
coefficient are unknown. These parameters as well as the
object’s 2D state need to be estimated using EKF, with
noisy sensors which measure the robot’s position, velocity,
and acceleration in the global frame. The same values
for tf − t0, ∆to, ∆tc, tcalc as in the previous problem
were assumed. SACBP used ε = 0.04[s] and N = 10.
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Figure 1. (Left) Simulation environment with 20 targets and a surveillance robot. (Middle) The history of the worst entropy value
among the targets averaged over 20 runs with the standard deviation. With the budget of 10 Monte Carlo samples, SACBP had
small variance and consistently outperformed the other benchmarks on average. (Right) Computation time of SACBP achieved a
reasonable value compared with the benchmarks, only 0.11[s] slower than the targeted value, i.e., simulated tcalc.

Figure 2. Sample robot trajectories (depicted in red) generated by each algorithm. Greedy, MCTS-DPW, and Ergodic did not result
in a trajectory that fully covers the two groups of the targets, whereas SACBP periodically revisited both of them. With SACBP, the
robot traveled into one of the four diagonal directions for most of the time. This is due to the fact that SACBP optimizes a convex
quadratic under a box saturation constraint, which tends to find optimal solutions at the corners. In all the figures, the blue lines
represent the target trajectories and the ellipses are 99% error ellipses.
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Figure 3. (Left) The robot is attached to the rectangular object. (Middle) The history of the true running cost 1
2
xTCxx+ 1

2
uTCuu

averaged over 20 cases. SACBP with N = 10 samples successfully brought the cost to almost 0, meaning that the goal was
reached. MCTS-DPW with N = 190 was not as successful. Belief iLQG resulted in large overshoots around 2[s] and 11[s]. (Right)
Computation time of SACBP increased from the multi-target tracking problem due to increased complexity related to the
continuous-discrete belief dynamics. Note that belief iLQG took 5945[s] to derive the policy off-line, although the average online
execution time was only 4.0× 10−5[s] per iteration.
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The nominal control was a closed-loop position controller
whose input was the mean x-y position and the rotation
estimates of the object. The cost function was quadratic
in the true state x and control u, given by 1

2x
TCxx+

1
2u

TCuu. Taking expectations yielded the equivalent cost in
the Gaussian belief space c(b, u) = 1

2µ
TCxµ+ 1

2 tr(CxΣ) +
1
2u

TCuu, where Σ is the covariance matrix. We let terminal
cost h be the same as c except without the control term.

We compared SACBP against (i) MCTS-DPW in
the Gaussian belief space and (ii) belief iLQG. We
allowed MCTS-DPW to draw N = 190 samples to set the
computation time comparable to SACBP. As suggested in
Slade et al. (2017), MCTS-DPW used the position controller
mentioned above as the rollout policy. Similarly, belief iLQG
was initialized with a nominal trajectory generated by the
same position controller. Note that both MCTS-DPW and
belief iLQG computed controls for the discrete-time models
whereas SACBP directly used the continuous-time model.
However the simulation was all performed in continuous
time, meaning that the control for MCTS-DPW and belief
iLQG remained constant over each ∆to[s] interval. This
could explain the overshoot of the belief iLQG trajectory
around 2[s] in Figure 3. Another large overshoot around
11[s] is likely due to the locally optimal behavior of the
iLQG solver. Overall, the results presented in Figure 3
demonstrate that SACBP succeeded in this task with only 10
Monte Carlo samples, reducing the running cost to almost 0
within 10[s]. Although the computation time increased from
the previous problem due to the continuous-discrete filtering,
it still achieved near real-time performance and much shorter
than belief iLQG, which took 5945[s] until convergence in
our implementation.

5 Conclusions and Future Work
In this paper we have presented SACBP, a novel belief
space planning algorithm for continuous-time dynamical
systems. We have viewed the stochastic belief dynamics
as a hybrid system with time-driven switching and
derived the optimal control perturbation based on the
perturbation theory of differential equations. The resulting
algorithm extends the framework of SAC to stochastic
belief dynamics and is highly parallelizable to run in
near real-time. The rigorous mathematical analysis showed
that the notion of mode insertion gradient can be
generalized to stochastic hybrid systems, which leads to
the property of SACBP that the algorithm is expected to
perform at least as good as the nominal policy for an
appropriate choice of the perturbation duration. Through an
extensive simulation study we have confirmed that SACBP
outperforms other algorithms including a greedy algorithm,
a local trajectory optimization method, and an approximate
dynamic programming approach. In future work we are
interested to consider a distributed multi-robot version of
SACBP as well as problems with hard state constraints. We
also plan to provide additional case studies for more complex
belief distributions with efficient implementation.
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A Detailed Analysis of Mode Insertion
Gradient for Stochastic Hybrid Systems

In this appendix, we provide a thorough analysis of the
stochastic hybrid systems with time-driven switching that
satisfy Assumptions 1 – 4. Our goal is to prove Theorem 1.

A.1 Nominal Trajectory under Specific
Observations

First, we analyze the properties of the system x(t) for t ∈
[0, T ] under a given initial condition x0, control u ∈ U , and a
specific sequence of observations (y1, . . . , yT ) sampled from
(Y1, . . . , YT ).

Proposition 3. Existence and Uniqueness of Solutions.
Given a control u ∈ U and a sequence of observations
(y1, . . . , yT ), the system x(t) starting at x0 has a unique
solution for t ∈ [0, T ].

Proof. We will show that each xi for i ∈ {1, . . . , T} has
a unique solution, and thus x is uniquely determined as a
whole. First, by Assumption (2a), (2c) and the Picard Lemma
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(Lemma 5.6.3 in Elijah (1997)), the differential equation

ẋ1(t) = f(x1(t), u(t)) (80)

with initial condition x1(0) = x0 has a solution for t ∈ [0, 1].
Furthermore, Proposition 5.6.5 in Elijah (1997) assures that
the solution x1 is unique under Assumption (2a) and (2c).
This guarantees that the initial condition for x2 defined
by x2(1) = g(x1(1), y1) is unique. Therefore, proceeding
by induction each x1, . . . , xT has a unique solution, which
completes the proof.

Corollary 4. Right Continuity. Given a control u ∈ U and
a sequence of observations (y1, . . . , yT ), the system x(t)
starting at x0 is right continuous in t on [0, T ].

Proof. By Proposition 3 each xi has a unique solution
that follows ẋi = f(x, u). Clearly each xi is continuous on
[i− 1, i], which proves that x(t) , xi(t) ∀t ∈ [i− 1, i) ∀i ∈
{1, 2, . . . , T}with x(T ) , g(xT (T ), yT ) is right continuous
on [0, T ].

Lemma 5. Let ξi denote the initial condition for xi. Then,
there exists a constant K9 <∞ such that for all i ∈
{1, . . . , T},

∀t ∈ [i− 1, i] ‖xi(t)‖2 ≤ (1 + ‖ξi‖2) eK9 (81)

Proof. Using Assumption (2a) and (2c), the claim follows
directly from Proposition 5.6.5 in Elijah (1997).

Proposition 6. Lipschitz Continuity. For each i ∈
{1, . . . , T}, let ξ′i and ξ′′i be two distinct initial conditions for
xi. Furthermore, let u′ and u′′ be two controls from U . The
pairs (ξ′, u′) and (ξ′′, u′′) respectively define two solutions
x′i and x′′i to ODE ẋi = f(xi, u) over [i− 1, i]. Then, there
exists an L <∞, independent of ξ′i, ξ

′′
i , u
′ and u′′, such that

∀i ∈ {1, . . . , T} ∀t ∈ [i− 1, i] ‖x′i(t)− x′′i (t)‖2 ≤

L

(
‖ξ′i − ξ′′i ‖2 +

∫ i

i−1

‖u′(t)− u′′(t)‖2dt
)
. (82)

Proof. The proof is similar to that of Lemma 5.6.7 in Elijah
(1997). Making use of the Picard Lemma (Lemma 5.6.3 in
Elijah (1997)) and Assumption (2c), we obtain

‖x′i(t)− x′′i (t)‖2 ≤

eK1

(
‖ξ′i − ξ′′i ‖2 +K1

∫ i

i−1

‖u′(t)− u′′(t)‖2dt
)
. (83)

As K1 ≥ 1,

‖x′i(t)− x′′i (t)‖2 ≤

K1e
K1

(
‖ξ′i − ξ′′i ‖2 +

∫ i

i−1

‖u′(t)− u′′(t)‖2dt
)
. (84)

Defining L , K1e
K1 <∞ completes the proof.

Corollary 7. Uniform Continuity in Initial Conditions. Let
u ∈ U be a given control. For each i ∈ {1, . . . , T}, let ξ′i
and ξ′′i be two distinct initial conditions for xi. The pairs
(ξ′, u) and (ξ′′, u) respectively define two solutions x′i and
x′′i to ODE ẋi = f(xi, u) over [i− 1, i]. Note that they share

the same control but have different initial conditions, unlike
Proposition 6. Then, for any ε > 0 there exists δ > 0 such
that

∀i ∈ {1, . . . , T} ∀t ∈ [i− 1, i] ‖ξ′i − ξ′′i ‖2 < δ

⇒ ‖x′i(t)− x′′i (t)‖2 < ε. (85)

Proof. By Proposition 6, we find

‖x′i(t)− x′′i (t)‖2 ≤ L‖ξ′i − ξ′′i ‖2 (86)

for all i ∈ {1, . . . , T} and t ∈ [i− 1, i], where L <∞. Take
any δ < ε

L to prove the claim.

Proposition 8. Continuity in Observations. Given a control
u ∈ U , the map (y1, . . . , yT ) 7→ x(t) is continuous for all
t ∈ [0, T ], where x represents the solution to the system
under Assumption 2 starting at x(0) = x0.

Proof. We will show the continuity of (y1, . . . , yT ) 7→ xi(t)
for each i ∈ {1, . . . , T} by mathematical induction. First,
by Assumption 2 the value of x1(t) is solely determined
by x0 and u. Therefore, for any t ∈ [0, 1] the function
(y1, . . . , yT ) 7→ x1(t) is a constant map, which is continu-
ous. Next, suppose that ∀t ∈ [i− 1, i] (y1, . . . , yT ) 7→ xi(t)
is continuous for some i ∈ {1, . . . , T − 1}. Now consider
xi+1. Let Fi+1(ξi+1, t) be the map from an initial condition
xi+1(i) = ξi+1 to the solution xi+1 at t ∈ [i, i+ 1] under the
given u. In other words, Fi+1(ξi+1, t) is equivalent to the
integral equation

Fi+1(ξi+1, t) , ξi+1 +

∫ t

i

f(xi+1(a), u(a))da (87)

and takes initial condition ξi+1 as well as time t
as its arguments. Substituting ξi+1 = g(xi(i), yi),
Fi+1 (g(xi(i), yi), t) gives the actual value of xi+1(t).
We will prove the continuity of Fi+1(g(xi(i), yi), t) as
follows. First, note that the map from (y1, . . . , yT ) to
Fi+1 (g(xi(i), yi), t) is the result of the composition:y1

...
yT

 7→ (
xi(i)
yi

)
7→ g(xi(i), yi) 7→ Fi+1(g(xi(i), yi), t).

(88)

The first map is continuous since xi(i) is continuous in
(y1, . . . , yT ) by the induction hypothesis. The second map
is also continuous by Assumption (2b). Lastly, the Corollary
7 shows that Fi+1(ξi+1, t) is (uniformly) continuous in
ξi+1 for t ∈ [i, i+ 1]. Therefore, (y1, . . . , yT ) 7→ xi+1(t) is
continuous for all t ∈ [i, i+ 1].

Proposition 9. Bounded State Trajectory. Given a control
u ∈ U and a sequence of observations (y1, . . . , yT ), the
system x(t) starting at x(0) = x1(0) = x0 has the following
bound:

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i]

‖xi(t)‖2 ≤
∑

(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 ,

(89)
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where Ki is a finite set of sequences of non-negative integers
of length i− 1, and α

(j1,...,ji−1)
i (x0) is a finite positive

constant that depends on x0 and (j1, . . . , ji−1) but not on
any of the observations or the control.

For i = 1 the bound is given by ∀t ∈ [0, 1] ‖x1(t)‖2 ≤
α1(x0) for some finite positive constant α1(x0).

Proof. For i = 1, Lemma 5 gives ∀t ∈ [0, 1] ‖x1(t)‖2 ≤
(1 + ‖x0‖2) eK9 , α1(x0). For i = 2, by Assumption (2d)
and the case for i = 1, we have

‖x2(1)‖2 = ‖g(x1(1), y1)‖2 (90)

≤ K3 +K4‖x1(1)‖L1
2 +K5‖y1‖L2

2

+K6‖x1(1)‖L1
2 ‖y1‖L2

2

(91)

≤ K3 +K4α1(x0)L1 +K5‖y1‖L2
2

+K6α1(x0)L1‖y1‖L2
2 .

(92)

Then, by Lemma 5, ∀t ∈ [1, 2]

‖x2(t)‖2 ≤ (1 + ‖x2(1)‖2)eK9 (93)

≤ eK9

(
1 +K3 +K4α1(x0)L1 +K5‖y1‖L2

2

+K6α1(x0)L1‖y1‖L2
2

)
(94)

,
∑

(j1)∈K2

α
(j1)
2 (x0)‖y1‖j12 , (95)

where K2 = {(0), (L2)}, and

α
(0)
2 (x0) = eK9

(
1 +K3 +K4α1(x0)L1

)
(96)

α
(L2)
2 (x0) = eK9

(
K5 +K6α1(x0)L1

)
(97)

are both finite positive constants that depend on x0 but not
on any of the observations or the control.

Next, suppose that the claim holds for some i ≥ 2. That is,

∀t ∈ [i− 1, i]

‖xi(t)‖2 ≤
∑

(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 ,

(98)

where Ki and α
(j1,...,ji−1)
i (x0) are as defined in the

statement of the proposition. Making use of this assumption,
Assumption (2d) and Lemma 5, we find that for all t ∈
[i, i+ 1],

‖xi+1(t)‖2 ≤ (1 + ‖g(xi(i), yi)‖2)eK9 (99)

≤ eK9(1 +K3) + eK9K5‖yi‖L2
2

+ eK9‖xi(i)‖L1
2 (K4 +K6‖yi‖L2

2 ).
(100)

The first two terms in the above sum can be rewritten as

eK9(1 +K3) = eK9(1 +K3)‖y1‖02 × · · · × ‖yi‖02 (101)

eK9K5‖yi‖L2
2 = eK9K5‖y1‖02 × · · · × ‖yi−1‖02 × ‖yi‖

L2
2

(102)

For the last term, we can use (98) and the multinomial
theorem to write

‖xi(i)‖L1
2

≤

 ∑
(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2

L1

(103)

=
∑

k1+···+k|Ki|=L1

(
L1

k1, . . . , k|Ki|

)

×


|Ki|∏
l=1

α
(j

(l)
1 ,...,j

(l)
i−1)

i (x0)kl

×
i−1∏
m=1

‖ym‖
∑|Ki|
l=1 klj

(l)
m

2 ,

(104)

where (j
(l)
1 , . . . , j

(l)
i−1) is the l-th element in Ki. Note that

kl is non-negative for all l ∈ {1, . . . , |Ki|}. By the induction
hypothesis (98), exponent

∑|Ki|
l=1 klj

(l)
m is also non-negative

for all m ∈ {1, . . . , i− 1}.
Thus, substituting (101), (102), and (104) into (100),

rearranging the sums and re-labeling the sequences of integer
exponents, we can write

‖xi+1(t)‖2 ≤
∑

(j1,...,ji)∈Ki+1

α
(j1,...,ji)
i+1 (x0)

i∏
m=1

‖ym‖jm2

(105)

for all t ∈ [i, i+ 1], whereKi+1 is a set of sequences of non-
negative integers of length i, and each α(j1,...,ji)

i+1 (x0) does
not depend on any of the observations or the control. Here
the cardinality of Ki+1 is at most finite, since

|Ki+1| ≤ 2 + 2

(
L1 + |Ki| − 1
|Ki| − 1

)
(106)

by (100) and the multinomial theorem.
Finally, proceeding by mathematical induction over i ∈

{2, . . . , T} completes the proof.

Proposition 10. Bounded Cost Functions. Given a control
u ∈ U and a sequence of observations (y1, . . . , yT ), the
instantaneous cost c(x(t), u(t)) induced by the state
trajectory x(t) has the following bound.

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i] |c(xi(t), u(t))|

≤
∑

(j1,...,ji−1)∈K′i

α
′(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 , (107)

where K′i is a finite set of sequences of non-negative integers
of length i− 1, and α

′(j1,...,ji−1)
i (x0) is a finite positive

constant that depends on x0 and (j1, . . . , ji−1) but not on
any of the observations or the control.

For i = 1 the bound is given by

∀t ∈ [0, 1] |c(x1(t), u(t))| ≤ α′1(x0) (108)

for some finite positive constant α′1(x0).
Similarly, the terminal cost h(x(T )) is bounded by

|h(x(T ))| ≤
∑

(j1,...,jT )∈K′T+1

α
′(j1,...,jT )
T+1 (x0)

T∏
m=1

‖ym‖jm2 .

(109)
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Proof. For the instantaneous cost function c(xi(t), u(t)),
Assumption 3 along with Proposition 9 yields the following
bound:

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i] |c(xi(t), u(t))| ≤ K7

+K8

 ∑
(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2

L3

.

(110)

Making use of the multinomial expansion formula in the
same manner as in the proof of Proposition 9, we conclude
that

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i] |c(xi(t), u(t))|

≤
∑

(j1,...,ji−1)∈K′i

α
′(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 (111)

for some finite set K′i of sequences of non-negative integers
and finite positive constants α′(j1,...,ji−1)

i (x0). Similarly, for
i = 1 we obtain

|c(x1(t), u(t))| ≤ K7 +K8α1(x0)L3 , α′1(x0) (112)

for all t ∈ [0, 1].
To bound the terminal cost, note that

|h(x(T ))| ≤ K7 +K8‖x(T )‖L3
2 (113)

= K7 +K8‖g(xT (T ), yT )‖L3
2 (114)

≤ K7 +K8

{
K3 +K5‖yT ‖L2

2

+ ‖xT (T )‖L1
2

(
K4 +K6‖yT ‖L2

2

)}L3

(115)

by Assumptions (2d) and 3. Since L3 <∞, (115) yields a
polynomial of ‖xT (T )‖2 and ‖yT ‖2 of finite terms, for each
of which we can use Proposition 9 and apply the multinomial
expansion formula to show

|h(x(T ))| ≤
∑

(j1,...,jT )∈K′T+1

α
′(j1,...,jT )
T+1 (x0)

T∏
m=1

‖ym‖jm2

(116)

for some finite set K′T+1 of sequence of non-negative
integers and finite positive constants α′(j1,...,jT )

T+1 (x0).

A.2 Perturbed Trajectory under Specific
Observations

Next, we will perturb the nominal state x of the system
while assuming the same initial condition x0 and the specific
observations (y1, . . . , yT ) as in Section A.1. The perturbed
control is an open-loop perturbation as defined below.

Definition 1. Perturbed Control. Let u ∈ U be a control.
For τ ∈ (0, 1) and v ∈ B(0, ρmax), define the perturbed
control uε by

uε(t) ,

{
v if t ∈ (τ − ε, τ ]

u(t) otherwise,
(117)

where ε ∈ [0, τ ]. By definition if ε = 0 then uε is the same as
u. We assume that the nominal control u(t) is left continuous
in t at t = τ .

Remark 4. It is obvious that uε(t) is piecewise continuous
on [0, T ]. Therefore, for v ∈ B(0, ρmax) we have uε ∈ U ,
i.e. uε is an admissible control. Thus, Proposition 3 assures
that there exists a unique solution xε for the trajectory of the
system under the control perturbation. In the remainder of
the analysis, we assume that (τ, v) is given and fixed.

Lemma 11. Let ε, ε′ ∈ [0, τ ], and let uε, uε
′ ∈ U be two

perturbed controls of the form (117). Let xε1, x
ε′

1 be the
solutions of x1 for t ∈ [0, 1] by applying uε and uε

′

respectively to the initial condition x0. Then, there exists an
L′ <∞, independent of ε, ε′, xε1 and xε

′

1 , such that

∀ε, ε′ ∈ [0, τ ] ∀t ∈ [0, 1] ‖xε1(t)− xε
′

1 (t)‖2 ≤ L′|ε− ε′|.
(118)

Proof. By Proposition 6, we find that

∀t ∈ [0, 1] ‖xε1(t)− xε
′

1 (t)‖2 ≤ L
∫ 1

0

‖uε(t)− uε
′
(t)‖2dt

(119)

for some L <∞. Let us derive an upper-bound on the
integral on the right hand side. If ε ≥ ε′,∫ 1

0

‖uε(t)− uε
′
(t)‖2dt =

∫ τ−ε′

τ−ε
‖v − u(t)‖2dt, (120)

where u(t) is the nominal control that both uε and uε
′

are
based on. Since u(t) ∈ B(0, ρmax), we obtain∫ 1

0

‖uε(t)− uε
′
(t)‖2dt ≤ sup

u∈B(0,ρmax)

‖v − u‖2(ε− ε′).

(121)

Similarly, if ε < ε′ we have∫ 1

0

‖uε(t)− uε
′
(t)‖2dt ≤ sup

u∈B(0,ρmax)

‖v − u‖2(ε′ − ε).

(122)

Put these two cases together and substitute into (119) to get

∀t ∈ [0, 1] ‖xε1(t)− xε
′

1 (t)‖2 ≤ L′|ε− ε′|, (123)

where L′ , L supu∈B(0,ρmax) ‖v − u‖2 ≤ 2Lρmax <∞.

Lemma 12. Let uε and xε1 be as in Lemma 11. Then,

lim
ε→0+

1

ε

∫ τ

τ−ε
{f(xε1(t), uε(t))− f(x1(t), u(t))} dt

= f(x1(τ), v)− f(x1(τ), u(τ)), (124)

where x1 denotes the solution under the nominal control
u ∈ U .

Proof. We will show that the difference norm∥∥∥∥1

ε

∫ τ

τ−ε
{f(xε1(t), uε(t))− f(x1(t), u(t))} dt

− f(x1(τ), v) + f(x1(τ), u(τ))

∥∥∥∥
2

(125)
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converges to 0 as ε→ 0+. Indeed, (125) becomes∥∥∥∥1

ε

∫ τ

τ−ε
{f(xε1(t), uε(t))− f(x1(t), u(t))

− f(x1(τ), v) + f(x1(τ), u(τ))}dt
∥∥∥∥

2

(126)

≤ 1

ε

∫ τ

τ−ε
‖f(xε1(t), uε(t))− f(x1(t), u(t))

− f(x1(τ), v) + f(x1(τ), u(τ))‖2dt
(127)

≤ 1

ε

∫ τ

τ−ε

{
‖f(xε1(t), uε(t))− f(x1(τ), v)‖2

+ ‖f(x1(t), u(t))− f(x1(τ), u(τ))‖2
}
dt.

(128)

We used the triangle inequality in (128). Now, making use
of the fact that ∀t ∈ (τ − ε, τ ] uε(t) = v, Assumption (2c)
yields

‖f(xε1(t), uε(t))− f(x1(τ), v)‖2
≤ K1‖xε1(t)− x1(τ)‖2 (129)
= K1‖xε1(t)− x1(t) + x1(t)− x1(τ)‖2 (130)
≤ K1‖xε1(t)− x1(t)‖2 +K1‖x1(t)− x1(τ)‖2 (131)
≤ K1L

′ε+K1‖x1(t)− x1(τ)‖2 (132)

for any t ∈ (τ − ε, τ ], where we applied Lemma 11 in (132)
with ε′ = 0. Similarly,

‖f(x1(t), u(t))− f(x1(τ), u(τ))‖2
≤ K1‖x1(t)− x1(τ)‖2 +K1‖u(t)− u(τ)‖2. (133)

Therefore, (125) is upper-bounded by

1

ε

∫ τ

τ−ε
{K1L

′ε+ 2K1‖x1(t)− x1(τ)‖2
+K1‖u(t)− u(τ)‖2}dt

(134)

≤ K1L
′ε+ 2K1 sup

t∈[τ−ε,τ ]

‖x1(t)− x1(τ)‖2

+K1 sup
t∈[τ−ε,τ ]

‖u(t)− u(τ)‖2,
(135)

which converges to 0 as ε→ 0+, since

0 ≤ sup
t∈[τ−ε,τ ]

‖x1(t)− x1(τ)‖2 −→ 0 (136)

and

0 ≤ sup
t∈[τ−ε,τ ]

‖u(t)− u(τ)‖2 −→ 0 (137)

as ε→ 0+.

Lemma 13. Let xε1 and x1 be as in Lemma 12. Let Ψ1(t)
be the right derivative of xε1(t) with respect to ε evaluated at
ε = 0. That is,

Ψ1(τ) =
∂+

∂ε
xε1(τ)

∣∣∣∣
ε=0

, lim
ε→0+

xε1(τ)− x1(τ)

ε
. (138)

(139)

Then, we have

Ψ1(τ) = f(x1(τ), v)− f(x1(τ), u(τ)). (140)

Proof. Let us express both xε1(τ) and x1(τ) in the integral
form:

xε1(τ) = x0 +

∫ τ

0

f(xε1(t), uε(t))dt (141)

x1(τ) = x0 +

∫ τ

0

f(x1(t), u(t))dt. (142)

Note that uε(t) = u(t) and xε1(t) = x1(t) for t ∈ [0, τ − ε],
since no perturbation is applied to the system until t > τ − ε.
Therefore,

xε1(τ)− x1(τ)

=

∫ τ

τ−ε
{f(xε1(t), uε(t))− f(x1(t), u(t))} dt. (143)

Making use of Lemma 12, we conclude that

lim
ε→0+

xε1(τ)− x1(τ)

ε
= f(x1(τ), v)− f(x1(τ), u(τ)).

(144)

Lemma 14. Let xε1 and x1 be as in Lemma 12. Then,
Ψ1(t) = ∂+

∂ε x
ε
1(t)

∣∣
ε=0

uniquely exists for t ∈ [τ, 1] and
follows the ODE:

Ψ̇1(t) =
∂

∂x1
f(x1(t), u(t))Ψ1(t), (145)

with the initial condition Ψ1(τ) given by Lemma 13.

Proof. Taking some a ∈ (τ, 1], let us express xε1(a) and
x1(a) in the integral form:

xε1(a) = xε1(τ) +

∫ a

τ

f(xε1(t), uε(t))dt (146)

x1(a) = x1(τ) +

∫ a

τ

f(x1(t), u(t))dt. (147)

Thus, we have

Ψ1(a) = Ψ1(τ)

+ lim
ε→0+

∫ a

τ

1

ε
{f(xε1(t), u(t))− f(x1(t), u(t))}dt, (148)

where we used ∀t ∈ [τ, a] uε(t) = u(t). We will take a
measure-theoretic approach to prove that the order of
the limit and the integration can be switched in (148).
First, think of the integral as a Lebesgue integral on the
measure space ([τ, a],B([τ, a]), λ), where B([τ, a]) is the
Borel σ-algebra on [τ, a] and λ is the Lebesgue measure.
Furthermore, consider the integrant as a function from [τ, a]
into the Banach space (Rnx , ‖ · ‖2), i.e. the Euclidean space
endowed with the `2 norm. By the piecewise continuity of
uε, u and the continuity of xε1, x1, and f , the integrant is a
piecewise continuous function with respect to t, which is λ-
measurable. In fact it is also Bochner-integrable, since for
t ∈ [τ, a] we have the constant bound:

1

ε
‖f(xε1(t), u(t))− f(x1(t), u(t))‖2 (149)

≤ 1

ε
K1‖xε1(t)− x1(t)‖2 (150)

≤ K1L
′ (151)
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by Assumption (2c) and Lemma 11. Furthermore, the chain
rule gives

lim
ε→0+

1

ε
(f(xε1(t), u(t))− f(x1(t), u(t))) (152)

=
∂

∂x1
f(x1(t), u(t))Ψ1(t), (153)

assuming that Ψ1(t) exists for t ∈ [τ, a]. Therefore, by
the Bochner-integral version of the dominated convergence
theorem (Theorem 3 in Diestel and Uhl (1977), Chapter II),
we obtain

Ψ1(a) = Ψ1(t) +

∫ a

τ

∂

∂x1
f(x1(t), u(t))Ψ1(t)dt. (154)

This is equivalent to the ordinary differential equation:

Ψ̇1(t) =
∂

∂x1
f(x1(t), u(t))Ψ1(t). (155)

It remains to show that the solution Ψ1(t) that satisfies (155)
does exist and is unique. First, let Ψ′1 and Ψ′′1 be two systems
that follow (155) and share the same initial condition Ψ1(τ).
Then, by Assumption (2c) we have

‖Ψ̇′1(t)− Ψ̇′′1(t)‖2

=

∥∥∥∥ ∂

∂x1
f(x1(t), u(t))(Ψ′1(t)−Ψ′′1(t))

∥∥∥∥
2

(156)

≤
∥∥∥∥ ∂

∂x1
f(x1(t), u(t))

∥∥∥∥
2

· ‖Ψ′1(t)−Ψ′′1(t)‖2
(157)

≤ K2 ‖Ψ′1(t)−Ψ′′1(t)‖2 . (158)

Existence follows from this inequality in conjunction with
the Picard Lemma (Lemma 5.6.3 in Elijah (1997)). To
show the uniqueness, apply the Bellman-Gronwall Lemma
(Lemma 5.6.4 in Elijah (1997)) to the following integral
inequality:

∀a ∈ [τ, 1]

‖Ψ′1(a)−Ψ′′1(a)‖2 ≤ K2

∫ a

τ

‖Ψ′1(t)−Ψ′′1(t)‖2dt. (159)

Proposition 15. Variational Equation. Let u ∈ U and x1

be the nominal control and the resulting state trajectory.
Let xε1 be the perturbed state induced by the perturbed
control uε of the form (117). Propagating xε1(t) through the
hybrid dynamics, we get a series of modes xε2, . . . , x

ε
T that

constitutes the entire trajectory xε(t) for t ∈ [τ, T ]. Define
the state variation Ψ(t) for t ∈ [τ, T ] by

Ψ(t) =
∂+

∂ε
xε(t)

∣∣∣∣
ε=0

, lim
ε→0+

xε(t)− x(t)

ε
. (160)

Then, Ψ(t) exists for t ∈ [τ, T ] and follows the hybrid system
with time-driven switching:

Ψ(t) =

{
Ψ1(t) ∀t ∈ [τ, 1)

Ψi(t) ∀t ∈ [i− 1, i) ∀i ∈ {2, . . . , T}
(161)

with Ψ(T ) = ∂
∂xT

g(xT (T ), yT )ΨT (T ), where Ψ1 is defined
on [τ, 1] as in Lemma 14, and Ψi for i ≥ 2 is defined on

[i− 1, i] with

Ψi(i− 1) =
∂

∂xi−1
g(xi−1(i− 1), yi−1)Ψi−1(i− 1)

(162)

Ψ̇i(t) =
∂

∂xi
f(xi(t), u(t))Ψi(t) ∀t ∈ [i− 1, i].

(163)

Proof. The case for t ∈ [τ, 1) follows from Lemma 14, since
in this case we have

Ψ(t) , lim
ε→0+

xε(t)− x(t)

ε
(164)

= lim
ε→0+

xε1(t)− x1(t)

ε
(165)

= Ψ1(t). (166)

At t = 1, we obtain

Ψ(1) , lim
ε→0+

xε(1)− x(1)

ε
(167)

= lim
ε→0+

xε2(1)− x2(1)

ε
(168)

= lim
ε→0+

g(xε1(1), y1)− g(x1(1), y1)

ε
(169)

=
∂

∂x
g(x1(1), y1)Ψ1(1) (170)

by (47) and the chain rule. Let us define Ψ2 by Ψ2(t) ,
limε→0+(xε2(t)− x2(t))/ε. Similarly to the proof of Lemma
14, one can show that Ψ2 follows the integral equation:

Ψ2(a) = Ψ2(1) +

∫ a

1

∂

∂x2
f(x2(t), u(t))Ψ2(t)dt (171)

with Ψ2(1) = Ψ(1), and that Ψ2(t) that satisfies (162) and
(163) uniquely exists. This proves the case for t ∈ [1, 2).
Proceeding by induction completes the proof.

So far we have focused entirely on the right derivative
∂+
∂ε x

ε(t) evaluated at ε = 0. The next proposition shows that
xε1 is in fact right differentiable with respect to ε at all
ε ∈ [0, τ).

Proposition 16. Right Differentiability of State Perturbation.
Let xε(t) be the perturbed state trajectory under the
perturbed control uε defined by (117). Let Ψε(t) denote the
right derivative ∂+

∂ε x
ε(t) evaluated at a particular ε ∈ [0, τ).

(Note that when ε = 0 we have Ψε = Ψ.) Then, Ψε(t) exists
for t ∈ [τ − ε, T ] and follows the hybrid system with time-
driven switching:

Ψε(t) =

{
Ψε

1(t) ∀t ∈ [τ − ε, 1)

Ψε
i(t) ∀t ∈ [i− 1, i) ∀i ∈ {2, . . . , T}

(172)

with Ψε(T ) = ∂
∂xεT

g(xεT (T ), yT )Ψε
T (T ). Ψε

1 is defined on
[τ − ε, 1], where

Ψε
1(τ − ε) = f(xε1(τ − ε), v)− f(xε1(τ − ε), uε(τ − ε))

(173)
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and

Ψ̇ε
1(t) =

∂

∂xε1
f(xε1(t), uε(t))Ψε

1(t) ∀t ∈ [τ − ε, 1]. (174)

Ψε
i for i ≥ 2 is defined on [i− 1, i] with

Ψε
i(i− 1) =

∂

∂xεi−1

g(xεi−1(i− 1), yi−1)Ψε
i−1(i− 1)

(175)

Ψ̇ε
i(t) =

∂

∂xεi
f(xεi(t), u

ε(t))Ψε
i(t) ∀t ∈ [i− 1, i].

(176)

Proof. The proposition can be proven by considering the
perturbed control uε as the new nominal control, and
defining a further perturbation based on this nominal control.
Formally, define ũε

′
by

ũε
′
(t) ,

{
v if t ∈ (τ − ε− ε′, τ − ε]
uε(t) otherwise

(177)

with ε′ ∈ [0, τ − ε), where (τ, v) is the same pair of values as
for uε(t). Since uε(t) is left continuous in t at t = τ − ε, ũε′

is a valid perturbed control of the form (117) with uε being
the nominal control. Here ε is considered as fixed and the
parameters defining this new perturbation are v, τ − ε, and
ε′. This perturbation yields the new perturbed state trajectory
x̃ε
′

based on the nominal trajectory xε. Note that when ε′ = 0
we have ũε

′
= uε and x̃ε

′
= xε. We can define the new state

variation:

Ψ̃(t) =
∂+

∂ε′
x̃ε
′
(t)

∣∣∣∣
ε′=0

, lim
ε′→0+

x̃ε
′
(t)− xε(t)
ε′

. (178)

Applying Proposition 15 to this new setting, we find that
Ψ̃(t) exists for t ∈ [τ − ε, T ] and follows the hybrid system
with time-driven switching:

Ψ̃(t) =

{
Ψ̃1(t) ∀t ∈ [τ − ε, 1)

Ψ̃i(t) ∀t ∈ [i− 1, i) ∀i ∈ {2, . . . , T}
(179)

with Ψ̃(T ) = ∂
∂xεT

g(xεT (T ), yT )Ψ̃T (T ). Ψ̃1 is defined on
[τ − ε, 1], where

Ψ̃1(τ − ε) = f(xε1(τ − ε), v)− f(xε1(τ − ε), uε(τ − ε))
(180)

and

˙̃
Ψ1(t) =

∂

∂xε1
f(xε1(t), uε(t))Ψ̃1(t) ∀t ∈ [τ − ε, 1]. (181)

Ψ̃i for i ≥ 2 is defined on [i− 1, i] with

Ψ̃i(i− 1) =
∂

∂xεi−1

g(xεi−1(i− 1), yi−1)Ψ̃i−1(i− 1)

(182)

˙̃
Ψi(t) =

∂

∂xεi
f(xεi(t), u

ε(t))Ψ̃ε
i(t) ∀t ∈ [i− 1, i].

(183)

On the other hand, notice that the new perturbed control
ũε
′

is actually equivalent to the perturbed control uε+ε
′

that

is based on the original nominal control u. Namely,

ũε
′
(t) = uε+ε

′
(t) ,

{
v if t ∈ (τ − (ε+ ε′), τ ]

u(t) otherwise.
(184)

Consequently, the new perturbed state x̃ε
′

is equal to xε+ε
′
,

and thus

Ψ̃(t) = lim
ε′→0+

x̃ε
′
(t)− xε(t)
ε′

(185)

= lim
ε′→0+

xε+ε
′
(t)− xε(t)
ε′

(186)

= Ψε(t). (187)

This completes the proof.

Lemma 17. Let Ψε
1, . . . ,Ψ

ε
T be as given by Proposition 16.

Then, for Ψε
1 the following holds.

‖Ψε
1(t)‖2 ≤ 2K1ρmaxe

K2 ∀t ∈ [τ − ε, 1] (188)

Similarly, for all i ∈ {2, . . . , T} we have

‖Ψε
i(t)‖2 ≤ ‖Ψε

i(i− 1)‖2eK2 ∀t ∈ [i− 1, i]. (189)

Proof. We begin with the integral equation:

Ψε
1(a) = Ψε

1(τ − ε)

+

∫ a

τ−ε

∂

∂xε1
f(xε1(t), uε(t))Ψε

1(t)dt. (190)

Therefore,

‖Ψε
1(a)‖2 ≤ ‖Ψε

1(τ − ε)‖2

+

∫ a

τ−ε

∥∥∥∥ ∂

∂xε1
f(xε1(t), uε(t))

∥∥∥∥
2

· ‖Ψε
1(t)‖2dt. (191)

Using

Ψε
1(τ − ε) = f(xε1(τ − ε), v)− f(xε1(τ − ε), uε(τ − ε))

(192)

and Assumption (2c), we get

‖Ψε
1(a)‖2 ≤ K1‖v − uε(τ − ε)‖2 +K2

∫ a

τ−ε
‖Ψε

1(t)‖2dt

(193)

≤ K1 sup
u∈B(0,ρmax)

‖v − u‖2

+K2

∫ a

τ−ε
‖Ψε

1(t)‖2dt
(194)

≤ 2K1ρmax +K2

∫ a

τ−ε
‖Ψε

1(t)‖2dt (195)

for all a ∈ [τ − ε, 1]. Thus, by the Bellman-Gronwall
Lemma (Lemma 5.6.4 in Elijah (1997)) it follows that

‖Ψε
1(t)‖2 ≤ 2K1ρmaxe

K2 ∀t ∈ [τ − ε, 1]. (196)
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For general i ≥ 2, apply the Bellman-Gronwall Lemma to
the similar integral inequality:

∀a ∈ [i− 1, i] (197)

‖Ψε
i(a)‖2 ≤ ‖Ψε

i(i− 1)‖2 +K2

∫ a

i−1

‖Ψε
i(t)‖2dt (198)

to get the result.

Proposition 18. Bounded State Variation. Given uε and
(y1, . . . , yT ), Ψε defined in Proposition 16 has the following
bound:

∀ε ∈ [0, τ) ∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i] (199)

‖Ψε
i(t)‖2 ≤

∑
(j1,...,ji−1)∈Li

β
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 ,

(200)

where Li is a finite set of sequences of non-negative integers
of length i− 1, and β

(j1,...,ji−1)
i (x0) is a finite positive

constant that depends on x0 and (j1, . . . , ji−1) but not on
ε, uε, or (y1, . . . , yT ).

Proof. The proof of this proposition is similar to that of
Proposition 9. Take any ε ∈ [0, τ). For i = 2, we have ∀t ∈
[1, 2]

‖Ψε
2(t)‖2 ≤ ‖Ψε

2(1)‖2eK2 (201)

≤
∥∥∥∥ ∂

∂xε1
g(xε1(1), y1)Ψε

1(1)

∥∥∥∥
2

eK2 (202)

≤
∥∥∥∥ ∂

∂xε1
g(xε1(1), y1)

∥∥∥∥
2

· ‖Ψε
1(1)‖2 e

K2 (203)

≤ 2K1ρmaxe
2K2

{
K3 +K5‖y1‖L2

2 +(
K4 +K6‖y1‖L2

2

)
‖xε1(1)‖L1

2

} (204)

by Assumption (2d), Proposition 16, and Lemma 17. Using
Proposition 9, we can bound xε1(1) by

‖xε1(1)‖2 ≤
∑

(j1)∈K2

α
(j1)
2 (x0)‖y1‖j12 . (205)

Substituting (205) into (204) and using the multinomial
theorem, one can verify that

∀t ∈ [1, 2] ‖Ψε
2(t)‖2 ≤

∑
(j1)∈L1

β
(j1)
1 (x0)‖y1‖j12 (206)

for some finite set L1 and finite β(j1)
1 (x0).

Next, suppose that the claim holds for some i ≤ 2. That is,

∀t ∈ [i− 1, i]

‖Ψε
i(t)‖2 ≤

∑
(j1,...,ji−1)∈Li

β
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 ,

(207)

where Li and β(j1,...,ji−1)
i (x0) are as defined in the statement

of the proposition. Similar to the case for i = 2, we have

∀t ∈ [i, i+ 1]

‖Ψε
i+1(t)‖2

≤ eK2

 ∑
(j1,...,ji−1)∈Li

β
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2


×
{
K3 +K5‖yi‖L2

2 +
(
K4 +K6‖yi‖L2

2

)
‖xεi(i)‖

L1
2

}
(208)

Proposition 9 gives the following bound:

‖xεi(i)‖2 ≤
∑

(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 .

(209)

Substituting (209) into (208) and using the multinomial
theorem, we conclude that

∀t ∈ [i, i+ 1]

‖Ψε
i+1(t)‖2 ≤

∑
(j1,...,ji)∈Li+1

β
(j1,...,ji)
i+1 (x0)

i∏
m=1

‖ym‖jm2

(210)

for some finite set Li+1 and finite β(j1,...,ji)
i+1 (x0).

Finally, proceeding by mathematical induction over i ∈
{2, . . . , T} completes the proof.

Lemma 19. Let uε and xε1 be as in Lemma 11. Then,
similarly to Lemma 12 we have

lim
ε→0+

1

ε

∫ τ

τ−ε
{c(xε1(t), uε(t))− c(x1(t), u(t))} dt

= c(x1(τ), v)− c(x1(τ), u(τ)). (211)

Proof. As uε(t) = v ∀t ∈ (τ − ε, τ ], we will show that

lim
ε→0+

1

ε

∫ τ

τ−ε
{c(xε1(t), v)− c(x1(t), u(t))} dt

= c(x1(τ), v)− c(x1(τ), u(τ)). (212)

By Assumption 3 and the continuity of xε1(t), c(xε1(t), v) is
continuous with respect to t on [τ − ε, τ ]. Thus, the mean
value theorem yields

1

ε

∫ τ

τ−ε
c(xε1(t), v)dt = c(xε1(t̃), v) (213)

for some t̃ ∈ [τ − ε, τ ]. From the triangle inequality and
Lemma 11 it follows that

‖xε1(t̃)− x1(τ)‖2 ≤ ‖xε1(t̃)− x1(t̃)‖2 + ‖x1(t̃)− x1(τ)‖2
(214)

≤ L′ε+ ‖x1(t̃)− x1(τ)‖2. (215)

Therefore, limε→0+ xε1(t̃) = x1(τ) and

lim
ε→0+

1

ε

∫ τ

τ−ε
c(xε1(t), v)dt = c(x1(τ), v). (216)
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On the other hand, u(t) is continuous on [τ − ε, τ ] for
all sufficiently small ε, since u is left continuous at τ by
Definition 1. Therefore, c(x1(t), u(t)) is continuous with
respect to t on [τ − ε, τ ] for ε small. The mean value theorem
gives

1

ε

∫ τ

τ−ε
c(x1(t), u(t))dt = c(x1(t̃), u(t̃)) (217)

for some t̃ ∈ [τ − ε, τ ]. Taking the limit ε→ 0+, the right
hand side converges to c(x1(τ), u(τ)). Combining this result
with (216), we conclude that

lim
ε→0+

1

ε

∫ τ

τ−ε
{c(xε1(t), v)− c(x1(t), u(t))} dt

= c(x1(τ), v)− c(x1(τ), u(τ)). (218)

Lemma 20. Given ε ∈ [0, τ), uε and (y1, . . . , yT ), the right
derivative of the instantaneous cost function with respect to
ε is given by

∀t ∈ [i− 1, i] (219)
∂+

∂ε
c(xεi(t), u

ε(t)) =
∂

∂xεi
c(xεi(t), u(t))TΨε

i(t). (220)

for each i ∈ {2, . . . , T}.
For i = 1 we have

∀t ∈ (τ, 1] (221)
∂+

∂ε
c(xε1(t), uε(t)) =

∂

∂xε1
c(xε1(t), u(t))TΨε

1(t), (222)

Similarly, the right derivative of the terminal cost function
with respect to ε is given by

∂+

∂ε
h(xε(T )) =

∂

∂xε
h(xε(T ))TΨε(T ). (223)

Proof. To prove the claim for the instantaneous cost, note
that uε(t) = u(t) for all t ∈ (τ, T ] and use the chain rule.
The case for the terminal cost also follows from the chain
rule.

Proposition 21. Bounded Cost Variations. Given ε ∈
[0, τ), uε and (y1, . . . , yT ), the right derivative of the
instantaneous cost function with respect to ε has the
following uniform bound:

∀t ∈ [i− 1, i] (224)∣∣∣∣∂+

∂ε
c(xεi(t), u

ε(t))

∣∣∣∣
≤

∑
(j1,...,ji−1)∈L′i

β
′(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2
(225)

for each i ∈ {2, . . . , T}, where L′i is a finite set of
sequences of nen-negative integers of length i− 1, and
β
′(j1,...,ji−1)
i (x0) is a finite positive constant that depends on
x0 and (j1, . . . , ji−1) but not on ε, uε, or (y1, . . . , yT ).

For i = 1 the bound is given by

∀t ∈ (τ, 1]

∣∣∣∣∂+

∂ε
c(xε1(t), uε(t))

∣∣∣∣ ≤ β′1(x0) (226)

for some finite positive constant β′1(x0).
Similarly, the right derivative of the terminal cost function

with respect to ε has the following bound:∣∣∣∣∂+

∂ε
h(xε(T ))

∣∣∣∣
≤

∑
(j1,...,jT )∈L′T+1

β
′(j1,...,jT )
T+1 (x0)

T∏
m=1

‖ym‖jm2 (227)

for some finite set L′T+1 of sequence of non-negative integers

and finite positive constants β′(j1,...,jT )
T+1 (x0).

Proof. The proof of this proposition is similar to that of
Proposition 10. Take any ε ∈ [0, τ). For i ∈ {2, . . . , T},
Assumption 3 along with Lemma 20 yields∣∣∣∣∂+

∂ε
c(xεi(t), u

ε(t))

∣∣∣∣ =

∣∣∣∣ ∂∂xεi c(xεi(t), u(t))TΨε
i(t)

∣∣∣∣ (228)

≤
∥∥∥∥ ∂

∂xεi
c(xεi(t), u(t))

∥∥∥∥
2

· ‖Ψε
i(t)‖2

(229)

≤ (K7 +K8‖xεi(t)‖
L3
2 ) ‖Ψε

i(t)‖2 .
(230)

By Propositions 9 and 18, we have

‖xεi(t)‖2 ≤
∑

(j1,...,ji−1)∈Ki

α
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2

(231)

‖Ψε
i(t)‖2 ≤

∑
(j1,...,ji−1)∈Li

β
(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2

(232)

for all t ∈ [i− 1, i]. Substituting these into (230) and using
the multinomial expansion formula, we conclude that

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i]

∣∣∣∣∂+

∂ε
c(xεi(t), u

ε(t))

∣∣∣∣
≤

∑
(j1,...,ji−1)∈L′i

β
′(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2

(233)

for some finite set L′i of sequences of non-negative integers
and finite positive constants β′(j1,...,ji−1)

i (x0). Similarly, for
i = 1 we have ∀t ∈ (τ, 1]∣∣∣∣∂+

∂ε
c(xε1(t), uε(t))

∣∣∣∣ ≤ (K7 +K8‖xε1(t)‖L3
2 )‖Ψε

1(t)‖2

(234)

≤ 2(K7 +K8α1(x0)L3)K1ρmaxe
K2

(235)

, β′1(x0), (236)

by Proposition 9 and Lemma 17.
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To bound the right derivative of the terminal cost, note that∣∣∣∣∂+

∂ε
h(xε(T ))

∣∣∣∣ =

∣∣∣∣ ∂∂xεh(xε(T ))TΨε(T )

∣∣∣∣ (237)

≤ (K7 +K8‖xε(T )‖L3
2 )‖Ψε(T )‖2 (238)

=
(
K7 +K8‖g(xεT (T ), yT )‖L3

2

)
‖Ψε(T )‖2 (239)

≤
(
K7 +K8‖g(xεT (T ), yT )‖L3

2

)
×
∥∥∥∥ ∂

∂xεT
g(xεT (T ), yT )

∥∥∥∥
2

· ‖Ψε
T (T )‖2

(240)

by Assumption 3, Proposition 15, and Lemma 20. One
can apply Assumption (2d) to bound the norms of g and
its Jacobian in terms of ‖xεT (T )‖2 and ‖yT ‖. Then, (240)
becomes a polynomial of ‖xεT (T )‖2 and ‖yT ‖, multiplied
by ‖Ψε

T (T )‖2. Finally, using (231) and (232) with i = T to
replace ‖xεT (T )‖2 and ‖Ψε

T (T )‖2, one can verify that∣∣∣∣∂+

∂ε
h(xε(T ))

∣∣∣∣
≤

∑
(j1,...,jT )∈L′T+1

β
′(j1,...,jT )
T+1 (x0)

T∏
m=1

‖ym‖jm2 (241)

for some finite setL′T+1 of sequence of non-negative integers
and finite positive constants β′(j1,...,jT )

T+1 (x0).

Lemma 22. Let xε be the perturbed state induced by
the perturbed control uε, and let (y1, . . . , yT ) be the
given observations. Then, the function ε 7→ c(xε(t), uε(t)) is
continuous with respect to ε ∈ [0, τ ] for all t ∈ (τ, T ].

Proof. Note that for t ∈ (τ, T ] we have uε(t) = u(t).
Thus, c(xε(t), uε(t)) = c(xε(t), u(t)). The continuity of
xε1(t) with respect to ε ∈ [0, τ ] follows from Lemma
11. In particular, xε1(1) is continuous with respect to ε.
Next, suppose that ε 7→ xεi(i) is continuous for some i ∈
{1, . . . , T}. Then, by Assumption (2b) and Corollary 7 it
follows that ε 7→ xεi+1(t) is continuous for all t ∈ [i, i+
1]. Proceeding by mathematical induction, we conclude
that xε(t) is continuous with respect to ε ∈ [0, τ ] for all
t ∈ (τ, T ]. Therefore, ε 7→ c(xε(t), u(t)) is continuous by
Assumption 3.

Proposition 23. Let u ∈ U be a control, which yields the
nominal state x. Let xε be the perturbed state induced by
the perturbed control uε, and let (y1, . . . , yT ) be the given
observations. Then, the following bounds hold for all ε ∈
[0, τ ]:

∀t ∈ (τ, 1]

|c(xε1(t), uε(t))− c(x1(t), u(t))| ≤ εβ′1(x0) (242)

and

∀i ∈ {2, . . . , T} ∀t ∈ [i− 1, i]

|c(xεi(t), uε(t))− c(xi(t), u(t))|

≤ ε
∑

(j1,...,ji−1)∈L′i

β
′(j1,...,ji−1)
i (x0)

i−1∏
m=1

‖ym‖jm2 ,

(243)

where β′1(x0), β′(j1,...,ji−1)
i (x0) and L′ are as defined in

Proposition 21.

Proof. For ε ∈ [0, τ ] and t ∈ (τ, T ], the function ε 7→
c(xε(t), uε(t)) is continuous by Lemma 22 and finite by
Proposition 10. It is also right differentiable with respect
to ε for ε ∈ [0, τ) and t ∈ (τ, T ] by Lemma 20. Therefore,
the mean value theorem (Corollary in Bourbaki and Spain
(2004), p.15) along with Proposition 21 proves the claim.

Lemma 24. Let xε be the perturbed state induced by the
perturbed control uε, and let (y1, . . . , yT ) be the given
observations. Then, the function ε 7→ h(xε(T )) is continuous
with respect to ε ∈ [0, τ ].

Proof. By the proof of Lemma 22 it follows that the function
ε 7→ xε(T ) is continuous with respect to ε ∈ [0, τ ]. The
continuity of h by Assumption 3 completes the proof.

Proposition 25. Let u ∈ U be a control, which yields the
nominal state x. Let xε be the perturbed state induced by
the perturbed control uε, and let (y1, . . . , yT ) be the given
observations. Then, the following bound holds for all ε ∈
[0, τ ]:

|h(xε(T ))− h(x(T ))|

≤ ε
∑

(j1,...,jT )∈L′T+1

β
′(j1,...,jT )
T+1 (x0)

T∏
m=1

‖ym‖jm2 , (244)

where β
′(j1,...,jT )
T+1 (x0) and L′T+1 are as defined in

Proposition 21.

Proof. The proof is very similar to that of Proposition
23. Use Proposition 10, Lemma 24, and Lemma 20 to
show finiteness, continuity, and right differentiability of ε 7→
h(xε(T )). Then use the same mean value theorem with
Proposition 21 to prove the claim.

A.3 Expected Total Cost under Stochastic
Observations

In this last part of the analysis, we finally let the observations
(y1, . . . , yT ) take random values; more formally, we treat
them as a sequence of random variables (Y1(ω), . . . , YT (ω))
for ω ∈ Ω, where (Ω,F ,P) is the probability space and each
Yi satisfies Assumption 4. With (τ, v) given and fixed, (ω, t)
and ε uniquely determine the perturbed control uε and the
observations, hence the resulting state trajectory xε and the
costs c(xε(t), uε(t)), h(xε(T )).

Lemma 26. Let ([τ, T ],B ([τ, T ]) , λ) be a measure space,
where B ([τ, T ]) is the Borel σ-algebra on [τ, T ] and λ is the
Lebesgue measure. Let µ , λ× P be the product measure
defined on the product space(Ω× [τ, T ],F ⊗ B ([τ, T ])),
where F ⊗ B ([τ, T ]) is the product σ-algebra. Then,
the function (ω, t) 7→ c(xε(t), uε(t)) is F ⊗ B ([τ, T ])-
measurable for every ε ∈ [0, τ ].

Proof. Take any ε ∈ [0, τ ]. Then, uε is in U and thus
the function (Y1(ω), . . . , YT (ω)) 7→ xε(t) is continuous for
every t ∈ [τ, T ] by Proposition 8. Therefore, the map
(ω, t) 7→ xε(t) as a function of ω is F-measurable for every
t ∈ [τ, T ]. By Assumption 2, xε(t) is also right continuous
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with respect to t for every ω ∈ Ω. Therefore, from Theorem
3 in Gowrisankaran (1972) it follows that (ω, t) 7→ xε(t)
is measurable with respect to the product σ-algebra F ⊗
B ([τ, T ]).

On the other hand, uε(t) is piecewise continuous in t and
is constant with respect to (Y1(ω), . . . , YT (ω)). Therefore,
(ω, t) 7→ uε(t) is also measurable with respect to F ⊗
B ([τ, T ]).

Finally, the continuity of the instantaneous cost c by
Assumption 3 proves the claim.

Proposition 27. For the perturbed control uε and the
perturbed state xε, we have

∂+

∂ε
E

[∫ T

τ

c(xε(t), uε(t))dt

] ∣∣∣∣∣
ε=0

= E

[∫ T

τ

∂

∂x
c(x(t), u(t))TΨ(t)dt

]
, (245)

where Ψ is the state variation defined in Proposition 15.

Proof. By definition, the left hand side of (245) is

∂+

∂ε
E

[∫ T

τ

c(xε(t), uε(t))dt

] ∣∣∣∣∣
ε=0

= lim
ε→0+

E

[∫ T

τ

1

ε
{c(xε(t), uε(t))− c(x(t), u(t))} dt

]
.

(246)

Consider the expected value above as the equivalent
Lebesgue integral:

∫
Ω

(∫
[τ,T ]

1

ε
{c(xε(t), uε(t))− c(x(t), u(t))} dλ(t)

)
× dP(ω). (247)

By Lemma 26 the integrant is measurable in the product
space. In addition, Proposition 23 shows that the absolute
value:

1

ε
|c(xε(t), uε(t))− c(x(t), u(t))| (248)

is bounded by an integrable function for µ-a.e. (ω, t). Indeed,
if we let ĉ(ω, t) to be a function defined by

ĉ(ω, t) =


β′1(x0) ∀t ∈ [τ, 1)∑

(j1,...,ji−1)∈L′i
β
′(j1,...,ji−1)
i (x0)

∏i−1
m=1 ‖Ym‖

jm
2

∀t ∈ [i− 1, i) ∀i ∈ {1, . . . , T},
(249)

then we have

1

ε
|c(xε(t), uε(t))− c(x(t), u(t))| ≤ ĉ(ω, t) (250)

for every non-zero ε and µ-a.e. (ω, t), and

∫
Ω

(∫
[τ,T ]

ĉ(ω, t)dλ(t)

)
dP(ω) = β′1(x0)(1− τ)

+

T∑
i=2

∑
(j1,...,ji−1)∈L′i

β
′(j1,...,ji−1)
i (x0)

× E

[
i−1∏
m=1

‖Ym‖jm2

]
, (251)

where

E

[
i−1∏
m=1

‖Ym‖jm2

]
≤
√
E
[
‖Y1‖j12

]√√√√E

[
i−1∏
m=2

‖Ym‖jm2

]
(252)

≤
...

≤
i−1∏
m=1

(
E
[
‖Ym‖jm2

]) 1
2m

<∞ (253)

by the Cauchy-Schwarz inequality and Assumption 4.
Furthermore, Lemma 20 proves that

lim
ε→0+

1

ε
{c(xε(t), uε(t))− c(x(t), u(t))}

=
∂

∂x
c(x(t), u(t))TΨ(t) (254)

for µ-a.e. (ω, t). Therefore, the dominated convergence
theorem yields

∂+

∂ε

∫
Ω

(∫ T

τ

c(xε(t), uε(t))dλ(t)

)
dP(ω)

∣∣∣∣∣
ε=0

=

∫
Ω

(∫ T

τ

∂

∂x
c(x(t), u(t))TΨ(t)dλ(t)

)
dP(ω). (255)

Proposition 28. For the perturbed control uε and the
perturbed state xε, we have

∂+

∂ε
E [h(xε(T )]

∣∣∣∣
ε=0

= E
[
∂

∂x
h(x(T ))TΨ(T )

]
, (256)

where Ψ is the state variation defined in Proposition 15.

Proof. The proof is similar to that of Proposition 27. By
Assumption 3 and Proposition 8, (Y1(ω), . . . , YT (ω)) 7→
h(xε(T )) is a continuous map for every ε ∈ [0, τ ]. Therefore,
the function ω 7→ h(xε(T )) is F-measurable.

By definition, the left hand side of (256) is

∂+

∂ε
E [h(xε(T )]

∣∣∣∣
ε=0

= lim
ε→0+

∫
Ω

1

ε
{h(xε(T ))− h(x(T ))} dP(ω) (257)

The analysis above implies that the integrant is F-
measurable. In addition, Proposition 25 shows that the
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absolute value:

1

ε
|h(xε(T ))− h(x(T ))| (258)

is bounded by an integrable function for every non-zero ε and
every ω ∈ Ω. Furthermore, Lemma 20 proves that

lim
ε→0+

1

ε
{h(xε(T ))− h(x(T ))} =

∂

∂x
h(x(T ))TΨ(T )

(259)

for every ω ∈ Ω. Therefore, the dominated convergence
theorem yields

∂+

∂ε

∫
Ω

h(xε(T ))dP(ω)

∣∣∣∣
ε=0

=

∫
Ω

∂

∂x
h(x(T ))TΨ(T )dP(ω).

(260)

Theorem 1. Mode Insertion Gradient. Suppose that
Assumptions 1 – 4 are satisfied. For a given (τ, v), let uε

denote the perturbed control of the form (117). The perturbed
control uε and the stochastic observations (Y1, . . . , YT )
result in the stochastic perturbed state trajectory xε. For such
uε and xε, let us define the mode insertion gradient of the
expected total cost as

∂+

∂ε
E

[∫ T

0

c(xε(t), uε(t))dt+ h(xε(T ))

] ∣∣∣∣∣
ε=0

. (261)

Then, this right derivative exists and we have

∂+

∂ε
E

[∫ T

0

c(xε(t), uε(t))dt+ h(xε(T ))

] ∣∣∣∣∣
ε=0

= c(x(τ), v)− c(x(τ), u(τ))

+ E

[∫ T

τ

∂

∂x
c(x(t), u(t))TΨ(t)dt

+
∂

∂x
h(x(T ))TΨ(T )

]
, (262)

where Ψ is the state variation defined in Proposition 15.

Proof. We first consider the instantaneous cost c. Split the
integration interval to get

E

[∫ T

0

c(xε(t), uε(t))dt

]

= E
[∫ τ−ε

0

c(xε(t), uε(t))dt

]
+ E

[∫ τ

τ−ε
c(xε(t), uε(t))dt

]
+ E

[∫ T

τ

c(xε(t), uε(t))dt

]
(263)

For the first two terms in the sum, recall that the evolution
of the state xε(t) is not affected by any observations for all

t ∈ [0, τ ]. Thus,

E
[∫ τ−ε

0

c(xε(t), uε(t))dt

]
=

∫ τ−ε

0

c(xε(t), uε(t))dt

(264)

E
[∫ τ

τ−ε
c(xε(t), uε(t))dt

]
=

∫ τ

τ−ε
c(xε(t), uε(t))dt.

(265)

Note that (264) is constant with respect to ε, since for all
t ∈ [0, τ − ε] we have uε(t) = u(t) and xε(t) = x(t). On the
other hand, for (265) we can apply Lemma 19 to obtain

∂+

∂ε
E
[∫ τ

τ−ε
c(xε(t), uε(t))dt

] ∣∣∣∣∣
ε=0

= c(x(τ), v)− c(x(τ), u(τ)) (266)

For the last term, Proposition 27 gives

∂+

∂ε
E

[∫ T

τ

c(xε(t), uε(t))dt

] ∣∣∣∣∣
ε=0

= E

[∫ T

τ

∂

∂x
c(x(t), u(t))TΨ(t)dt

]
. (267)

Finally, for the terminal cost h we have

∂+

∂ε
E [h(xε(T )]

∣∣∣∣
ε=0

= E
[
∂

∂x
h(x(T ))TΨ(T )

]
(268)

by Proposition 28.

Remark 5. Closed-loop Nominal Policy. As far as the
control is concerned, the analysis above only requires that
the nominal control u is in U (as in Assumption 1) and
the perturbed control uε is measurable with respect to
F ⊗ B([τ, T ]) (as in Lemma 26). To guarantee that these
requirements are satisfied with a closed-loop nominal policy
π : Rnx → Rm, it is sufficient that π is a measurable
map and the induced nominal control trajectory u(t) =
π(x(t)) for t ∈ [0, T ] belongs to U for any observations
(y1, . . . , yT ). Note that the model of the control perturbation
considered here is still open-loop:

uε(t) =

{
v if t ∈ (τ − ε, τ ]

π(x(t)) otherwise.
(269)

That is, the nominal state trajectory x is used in the control
feedback. This is not to be confused with the closed-loop
perturbation:

uεclosed(t) =

{
v if t ∈ (τ − ε, τ ]

π(xε(t)) otherwise,
(270)

where the perturbed state trajectory xε is fed back to the
controller.
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